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ABSTRACT  

Manufacture of building materials requires significant energy, and as demand for these 

materials continues to increase, the energy requirement will as well. Offsetting this 

energy use will require increased focus on sustainable building materials. Further, the 

energy used in building, particularly in heating and air conditioning, accounts for 40 

percent of a buildings energy use. Increasing the efficiency of building materials will 

reduce energy usage over the life time of the building.  Current methods for maintaining 

the interior environment can be highly inefficient depending on the building materials 

selected.  Materials such as concrete have low thermal efficiency and have a low heat 

capacity meaning it provides little insulation. Use of phase change materials (PCM) 

provides the opportunity to increase environmental efficiency of buildings by using the 

inherent latent heat storage as well as the increased heat capacity. 

Incorporating PCM into concrete via lightweight aggregates (LWA) by direct addition is 

seen as a viable option for increasing the thermal storage capabilities of concrete, thereby 

increasing building energy efficiency.  As PCM change phase from solid to liquid, heat is 

absorbed from the surroundings, decreasing the demand on the air conditioning systems 

on a hot day or vice versa on a cold day. Further these materials provide an additional 

insulating capacity above the value of plain concrete. When the temperature drops 

outside the PCM turns back into a solid and releases the energy stored from the day.   

PCM is a hydrophobic material and causes reductions in compressive strength when 

incorporated directly into concrete, as shown in previous studies. A proposed method for 

mitigating this detrimental effect, while still incorporating PCM into concrete is to 
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encapsulate the PCM in aggregate. This technique would, in theory, allow for the use of 

phase change materials directly in concrete, increasing the thermal efficiency of 

buildings, while negating the negative effect on compressive strength of the material. 
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INTRODUCTION 

 

The National Science and Technology Council reported that, buildings use 40% of the 

U.S.’s energy consumption and this will continue to grow as the population increases [1].   

40 to 50% of the energy usage in buildings is for temperature regulation [1].  Therefore, 

there is a substantial environmental effect from energy consumption associated with 

buildings, which is directly connected to carbon dioxide emissions from burning fossil 

fuels for power generation.  Using alternative means to produce electricity is one way to 

reduce these emissions, but there are many limitations connected to these sources, namely 

that they typically are intermittent sources of power and are dependent on a location’s 

climate or conditions.  Solar energy for instance cannot be used to regulate heating and 

cooling in buildings at night and on particularly cloudy days because current energy 

storage systems are inefficient or impractical [2].  Another option to be considered along 

with green energy production is to adjust the thermal heat storage capabilities of building 

materials through sensible heat and/or latent heat storage. Sensible heat storage, as in 

traditional construction materials, is where heat is transferred to the material which then 

leads to an increase of the material temperature during the heat storage process.  Latent 

heat storage on the other hand will absorb/release energy as it changes phase without 

increasing the temperature of the material until the maximum energy absorbed is 

achieved, after which it will behave as a sensible heat storage material. 

It is estimated that 30% to 50% of energy consumption in buildings could be reduced by 

incorporating thermally efficient technologies into them [1].  Different technologies are 

available from; building materials, insulation methods, and smart systems.  Engineers can 
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work towards the creation and implementation of new building materials and thermal 

systems to reduce the energy consumption of buildings. 

One option is phase change materials (PCM) integration.  The possible energy savings of 

PCM integration can be significant [3].  This thesis will explore direct incorporation of 

PCM into cement pastes and incorporation of PCM into lightweight aggregate (LWA) to 

be used in cement mortar. A study of the effects PCM has on cementitious systems, such 

as the pore structure, hydration and strength development will be presented in addition to 

the changes in the thermal characteristics and behavior of the PCM, and the PCM-cement 

composite. 

1.1 Objective 

Various studies have been completed on incorporating phase change materials into a 

variety of building materials including gypsum board [4, 5, 6, 7, 8, 9, 10, 11], masonry 

walls [12, 13]such as bricks or concrete, but the fundamental properties of these PCM in 

different systems is not as well understood.  Incorporation into cementitious systems 

possesses a broader range of issues than other materials due to the non-uniform nature of 

concrete, and the chemical reactions associated with cement hydration, which requires 

further investigation. The required investigations include such items as the changes in the 

material properties seen in both the PCM and the cementitious systems. 

The major objectives of this study are listed below: 

1. To better understand the microstructural and mechanical behavior changes of 

cementitious systems upon incorporation of phase change materials;  

2. To evaluate the thermal behavior of the phase change materials incorporated into 

cementitious systems; 
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3. Analyze impregnation of PCM into lightweight aggregate (LWA) to be used in 

cement and its effects on thermal and mechanical properties. 

1.2 Organization of Thesis 

Chapter 2 provides background on phase change materials and its applications in 

building materials.  Previous studies utilizing PCM incorporation into concrete and 

cementitious systems are discussed. 

Chapter 3 describes the materials utilized in this research along with the PCM 

incorporation methods.  Mix procedures and proportions are documented in this chapter. 

Chapter 4 presents the results of incorporation of PCM directly into cement pastes. Tests 

include differential scanning calorimetry (DSC), compression testing, isothermal 

calorimetry, mercury intrusion porosimetry (MIP), thermogravimetry simultaneous 

thermal analysis (TGA-STA), and Fourier transform infrared spectroscopy (FTIR). 

Chapter 5 presents the results on PCM incorporated into LWA used in mortar mixes.  

Tests include differential scanning calorimetry (DSC) to determine optimal incorporation 

method, compression testing, isothermal calorimetry, thermal conductivity, and Fourier 

transform infrared spectroscopy (FTIR). 

Chapter 6 summarizes the results and lists the conclusions found from this thesis. 

Recommended future work is also presented in this chapter. 
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LITERATURE REVIEW 

2.1 Phase Change Materials 

Phase change materials are a type of thermal energy storage material (TES); using the 

process of changing phase, typically a solid to liquid during a temperature range, to store 

latent energy, or a liquid to a solid to release stored energy [3, 14, 15, 16].  Through the 

phase change process the energy storage capacity of these materials is maximized while 

volume change associated with phase change is typically low.  Latent heat, also known as 

phase change enthalpy and heat of fusion, is not a process most materials (such as 

concrete) have at ambient conditions [17].  All materials have sensible heat storage, when 

the material temperature increases, energy is stored in the material, but latent heat storage 

occurs during phase change, where the melting temperature is held constant during 

energy storage [1]. Figure 1-1 represents the process of latent heat storage. The PCM 

begins to melt as it nears its phase change temperature; it absorbs heat and stores it until 

the material transitions back to solid state when the stored energy is then released into the 

environment. These benefits make PCM very promising to be used in building systems. 
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Figure 0-1: latent heat and sensible heat storage [18] , latent heat storage indicated by the 

horizontal line at isothermal conditions, while sensible heat storage is indicated by the 

sloped lines before and after the change of phase 

There have been many studies focusing on shifting heating and cooling loads from a peak 

electricity period to an off peak period via the use of PCM [10].  This is done, for 

example, in a warm climate where a PCM with solid to liquid phase change is used to 

absorb heat from the building thus decreasing the load on air conditioning systems during 

the day, and returning to a solid when the temperature cools at night releasing heat into 

the environment. This strategy shifts the power consumption requirements for cooling in 

a warm climate to the evening and night time, rather than during peak high temperature 

times during the day [12]. This would allow power companies to reduce power 

generation during peak times as power requirements become more uniform throughout 

the day, enabling a reduction in emissions, during peak times which would also help 

reduce the cost of electricity by leveling demand [12]. 
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2.1.1 PCM Classification 

There are three main classifications of solid-liquid PCM; organic compounds, inorganic 

compounds and inorganic eutectics.  Figure 2-1 shows the classifications of PCM. 

 

Figure 0-2: Classification of Phase Change Materials “reprinted from Pasupathy et al” 

[19] 

Typically organic PCMs have two subgroups; paraffin and non-paraffin.  Paraffins are 

waxes, which are affordable and supply a thermal storage density of approximately 120 

kJ/kg up to 210 kJ/kg [3].  They are composed of hydrocarbon chains of CH3(CH2)nCH3.  

Paraffins have the advantages of being chemically inert, tend to have low vapor pressure 

during melting, they melt congruently, and can withstand thermal cycling.  These 

materials work well in concrete applications because they are inactive in alkaline medium 

(unlike many other PCMs) and are resistant to degradation in the high pH environments 

associated with concrete [20]. Paraffins are non-polar substances such that hydrogen 

bonding with concrete hydrates is not possible [20]. Being linear alkanes, their methylene 

segments are capable of crystallization induced by high symmetry and weak van der 

Waals interactions [21]. The primary disadvantage of paraffins  include a low thermal 
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conductivity of around 0.2 W/(mK) and a more significant change in volume during 

phase transition [3]. This low thermal conductivity can reduce the effective efficiency of 

the PCM due to super cooling or nonlinear melting. 

 Non-paraffin PCMs include organic materials such as fatty acids, esters, alcohols and 

glycols.  While they have excellent melting and freezing properties, adapted for thermal 

storage, they have a significantly higher cost (about three times the cost of organic 

paraffins) [3, 14].   

Inorganic PCMs have higher heat of fusion than most organic PCMs, good thermal 

conductivity, affordable and are non-flammable [3].  Hydrated salts are typical inorganic 

PCM used, and have a high storage density (about 240 kJ/kg) and a higher thermal 

conductivity than paraffin waxes, 0.5 W/(mK) [3].  Glauber’s salt (Na2SO4H2O) is a salt 

hydrate with a meting temperature range from 32 to 35 ⁰C, latent heat of 254 kJ/kg, and it 

is one of the least expensive materials which can be utilized for thermal energy storage, 

but however the use of this material is restricted due to super cooling and phase 

segregation, which causes inefficiency in the thermal storage capabilities of the PCM 

[22].  A major drawback to hydrated salts is that they do not do well with thermal 

cycling; it melts congruently with formation of lower salts resulting in an irreversible 

process, thus resulting in a decreased storage capacity with each subsequent cycle [3]. 

Eutectics PCMs are a mixture of multiple solids that are proportioned in such a way to 

produce as low a melting point as possible.  There are three groups of eutectics: organic-

organic, inorganic-inorganic, and inorganic-organic.  
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2.2 PCM Incorporation into Building Materials 

Phase change materials have been incorporated into a number of building materials 

including gypsum board [4, 5, 6, 7, 8, 9, 10, 11], masonry walls [12, 13]such as bricks or 

concrete, natural stone [23], asphalt and concrete [24, 25]. The techniques used to 

incorporate PCM into building materials include: (i) direct incorporation, (ii) immersion, 

and (iii) encapsulation [26].  Direct incorporation and immersion are methods for 

including PCM directly into the material during the manufacturing process. Immersion 

processes impregnate a porous construction material such as gypsum, brick or concrete 

blocks with PCM such that the pores adsorb the PCM in its liquid via capillarity forces 

[27].  Immersion and direct addition can have leakage issues allowing the PCM to flow 

out of the material system or incompatibility issues with the system itself such as alkaline 

sensitive PCMs degrading in high alkalinity environments.  Encapsulation is another 

option for adding PCM to construction materials. This methodology entails the 

encapsulation of PCM in polymer shell usually done by the manufacture or into other 

materials that could then be incorporated into the building material. This methodology is 

proposed to reduce incompatibility issues along with leakage as the PCM is encapsulated 

and prevented from direct contact with the construction material [3]. Encapsulation of 

PCM occurs before incorporation into the building element, avoiding some of the issues 

associated with immersion and direct addition.  Regin et al. stated the goals of PCM 

containment should be: (i) meet strength requirements and provide structural stability,(ii) 

be flexible, (iii) corrosion resistant and act as a barrier between the PCM and its 

environment, (iv) thermally stable, and (v) allow for good heat transfer [28].  One method 

of encapsulation is termed microencapsulation, which is a process where small particles 
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or droplets of the material are surrounded or coated with a thin film, a polymeric shell. 

This typically generates a capsule in the size range of micrometers to millimeters [28].  

Microencapsulation prevents PCM leakage during phase change thus allowing PCM 

integration without interference with the building material, such as cement, lime, 

concrete, mortar, artificial marble, sealants, paints, textiles, and other coatings [15].  

Macroencapsulation provides the same benefits of encapsulations such as leakage 

protection, while generating particles small enough for integration without interference 

with the building material. The use of macroencapsulation in construction is commonly 

done by either packaging the PCM into larger containers or, spheres, or casting them in 

panels that are then used directly as building elements. Shape-stabilized PCMs are 

another new material of interest, and is a combination of the PCM incorporation methods, 

typically using one material for microencapsulation (done via immersion or direct 

incorporation) before being placed into the main building element. These materials have 

a high specific heat, good thermal conductivity, as well as the ability to maintain shape 

during the phase change process [29].  This would enable their use in lieu of 

macroencapsulation and microencapsulation using polymeric shells. One example of the 

use of this type of PCM is used in a method for incorporation into wallboard as proposed 

by Min et al. discussed in the next paragraph. 

Practical use of phase change materials requires first determining adequate locations for 

phase change materials to be used. One such possibility, is incorporation into wallboard, 

as gypsum wallboard is an extremely common building material used in almost all 

building projects, and several studies have been completed investigating incorporation of 

PCM into wallboard [8, 9, 11, 12].  One method for incorporation into wallboard was 
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proposed by Min et al. where melted paraffin was blended with perlite using two 

techniques: (i) at ambient temperature and atmospheric pressure in a 70⁰C water bath, 

and (ii) using a vacuum adsorption method where the vacuum was drawn for 30 minutes 

followed by addition of the melted paraffin to the vacuum machine for another 30 

minutes, both of which was then blended with water and gypsum and formed in molds 

[11].   

Romero-Sanchez et. al. studied immersion of a natural stone, Bateig azul, into two 

different PCMs Micronal DS 5000X, and Rubitherm RT6 with the melting temperatures 

of 26⁰C and 8⁰C, respectively.  Scanning electron microscopy (SEM), porosimetry, and 

differential scanning calorimetry (DSC) were the experimental techniques used for 

characterization of the natural stone with and without PCM.  Large scale testing was 

completed by constructing small concrete buildings with a natural stone façade, treated 

and untreated with PCM. Measurements were recorded at various locations along the 

structure, every 10 minutes for several day-night cycles during the summer and winter 

[23]. They concluded that reduction in energy consumption would occur, but that the 

effectiveness is dependent on PCM melting temperature, construction location and 

treatment of a single piece of natural stone with PCMs with different melting 

temperatures would optimize energy savings in both winter and summer [23]. 

2.3 PCM Incorporation into Cementitious Systems 

PCM can also be incorporated into cementitious systems such as concrete by a variety of 

means: (i) immersion of cured concrete into a melted liquid PCM, (ii) impregnation via 

saturation or vacuum saturation with porous aggregates [30], (iii) direct mixing of either 

encapsulated PCM or bulk PCM into concrete during mixing. The method selected for 
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incorporation will influence not only the thermal properties of the parent concrete, but 

also the mechanical strength [31] and durability performances [20, 24].  Concrete is a 

highly alkaline materials, and the pore solution of concrete maintains a significantly high 

pH environment [20]. Several PCMs have been shown to be unstable in alkaline medium 

and when exposed to a high pH environment. In addition, chemically some polar PCMs 

experience hydrogen bonding with silica hydrates in concrete and the hydroxyl ions from 

Ca(OH)2, affecting their incorporation into the system [32]. There are also known issues 

with PCMs in concrete associated with the relation between PCM addition and the 

overall mechanical performance of the concrete [22, 25, 33]. The cause of this decrease 

in mechanical performance has been attributed to chemical and physical interactions 

between the PCM and the cement hydration products, perhaps resulting in the formation 

of alternative hydration products or decreasing the C-S-H formation as well as the 

microstructural influences or inclusion of a weaker phase into the binder of cementitious 

systems. Further, as the nature of phase change material is to absorb heat, it may result in 

a reduced curing temperature for the concrete as it absorbs heat that is being generated by 

the exothermic hydration reaction, perhaps resulting in a lower degree of hydration as 

compared to OPC mixes without PCM [24]. Additionally, it is notable that the 

temperature effects of PCM inclusion during the hydration processes may decrease the 

induced thermal stresses from the hydration reaction, possibly resulting in a final product 

that has increased overall mechanical and durability/transport performance due to 

decrease thermal cracking [24]. 
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2.3.1 Incorporation into LWA 

Lightweight aggregates in concrete usually serve to supply extra water that is used by the 

cement and pozzolan compounds during hydration as well as reducing overall structure 

weight.  LWA materials are typically composed of porous materials.  The porous nature 

of the LWA provides for the opportunity that they may be filled with PCMs using 

impregnation techniques such as vacuum saturation. Theoretically a LWA with 20% 

porosity can provide up to 350 kg/m
3
 of PCM for a typical concrete system [3].  

Bentz and Turpin ran DSC experiments on lightweight aggregate soaked in PEG and 

paraffin PCM. They were able to determine that the peak transition temperature for 

paraffin was higher than that of PEG and that heat transfer was enhanced between the 

PCM in the aggregate and the bulk concrete [24]. This can be attributed to affects in 

PCM in pore systems. 

Bentz and Sakulich proposed the use of PCM incorporated into LWA in concrete for 

bridge decking, to reduce freeze/thaw damage.  They developed a novel apparatus used to 

saturate low temperature PCM into the lightweight aggregate using several different 

PCMs to determine the optimal duration of vacuum saturation to impregnate into the 

LWA [30]. Compressive strength decreased for mortars with PCM present. Iso thermal 

calorimetry was utilized for analysis of hydration the samples using PEG saw retardation 

in hydration time and suppression in the peak of hydration. This showed that 

incorporation into LWA can still have negative effects on the mortars development. 

Incorporation of the PCM butyl stearate into three different expanded clay and shale 

LWAs were studied by Zhang et al. to look at the pore structure of the aggregates along 

with the effective absorption of the PCM into the pores [34]. MIP and absorption testing 
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of the porous aggregate determined that for a pore space diameter of 1 to 2µm the PCM 

could occupy 75% of the total pore volume. This showed that vacuum saturation using 

expanded clay and shale as a good supporting material for PCM in concrete. DSC 

measurements illustrated that their method of vacuum saturating in concrete had 

comparable energy storage capacity to a commercially available PCM product [34]. 

2.3.2 Direct Incorporation  

PCM stability in concrete was studied by Hawes et al. using autoclaved block, regular 

concrete block, pumice concrete, lightweight concrete using expanded shale aggregate, 

expanded slag aggregate, and ordinary portland cement (OPC). They immersed  harden 

concrete specimens into liquid PCM. When selecting a PCM to be used in concrete many 

considerations need to be made concerning:  

a) Thermodynamics: latent heat of fusion, heat transfer, transition temperature, 

phase equilibrium and vapor pressure; 

b) Physical: appearance, change in volume and density; 

c) Kinetics: avoiding supercooling, and the rate of crystallization; 

d) Stability in the concrete; 

e) Toxicity, flammability and nuisance; 

f) Economy; 

Out of these stability is considered to be one of the most important because if the PCM is 

unstable it will not preform perform well thermally [20]. Six different PCMs were 

selected; Butyl stearate, 1-dodecanol, polyethylene Glycol, 1-tetradecanol, paraffin and 

dimethyl sulfoxide. The thermal characteristics were done by differential scanning 

calorimetry (DSC) this was tested on samples aged up to 692 days to help determine the 
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stability. Some PCMs are instable in high alkalinity environments, such as butyl stearate, 

1-dodcanol, and 1-tetradeconal, but using pozzolans like silica fume (SiO2) and fly ash 

would reduce the alkalinity of the system and thus allowing for better stabilization of 

alkaline sensitive PCMs [20]. Butyl stearate was stable in the autoclaved block and 

regular concrete block, as well in the modified regular block, pumice concrete, and 

expanded shale. 1-dodecanol suffered some loss at initial stages in the autoclaved block 

then remained stable, while both dodecanol and tetradecanol had stable latennt heat in the 

modified regular concrete block and pumice concrete but experienced a phase change 

temperature shift downwards. Paraffin being alkane remained stable in the autoclaved 

block, regular block, pumice concrete and OPC, suffering little degradation with time and 

little leakage issues. 

Typically direct mixing is done using a PCM that is encapsulated in a chemically and 

physically stable shell [35]. Encapsulation is to ensure no interference with the concrete, 

such as discussed in Hawes et al. Hunger et al. direct mixed Micronal, a 

microencapsulated paraffin into self-compacting concrete. Self-compacting concrete has 

a lower yield stress, simplifying concrete placement, and reducing the risk of fracturing 

the microcapsules [25]. It was found that the microencapsulated PCM had no influence 

on fresh concrete properties, though the peak temperature of hydration could be 28.1% 

reduced, thermal conductivity decreased, porosity increased and though there was a loss 

in compressive strength of 35 N/mm
2
 was found to be acceptable for most constructional 

purposes.  

. 
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Cabeza et al. ran a study on concrete blocks impregnated with Micronal, a 

microencapsulated PCM, used to build cubicles (2m x 2m x 3m) in Spain which were 

then tested for thermal efficiency. The results of the study showed that energy storage by 

encapsulated PCM led to an improved thermal inertia as well as a lower inner 

temperature, thus demonstrating the opportunity in energy savings [31]. The results also 

supported the importance of the night time cooling cycle that causes the PCM to freeze, 

allowing it to be used again during the day when it melts to complete a full cycle every 

day [31]. 
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MATERIALS, MIXTURES AND METHODS 

 

3.1 Materials 

Materials utilized in this study are discussed and explained. 

3.1.1 Cement 

Type I/II ordinary portland cement (OPC) conforming to ASTM C 150 was utilized in 

preparation of mortars and cement pastes.  Table 3-1 provides the chemical composition 

and physical characteristics of this cement. 

Table 0-1: Typical chemical composition and physical properties of cement 

 

 
 

3.1.2 Pure Temp 

Pure Temp is a proprietary formulized PCM that is produced by the company Entropy 

Solutions.  It is made from 100% agricultural sources, making it biodegradable and non-

Composition (% by mass) / property Cement

Silica( SiO2) 20.2

Alumina (Al2O3) 4.7

Iron oxide (Fe2O3) 3

Calcium oxide (CaO) 61.9

Magnesium oxide (MgO) 2.6

Sodium oxide (Na2O) 0.19

Potassium oxide (K2O) 0.82

Sulfur trioxide (SO3) 3.9

Loss on ignition 1.9

Median Particle size (µm) 13

Density (kg/m
3
) 3150
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toxic.  Pure Temp has a phase change transition temperature that varies from -40⁰C to 

150⁰C allowing it to be used in many applications. It appears as a clear when in the liquid 

phase and appears as an opaque wax when in its solid phase. This bulk PCM shows 

consistent repeatable performance over numerous freeze/thaw cycles making it practical 

for applications in building materials.  PT 25, 27, and 29, three of the Pure Temp PCMs, 

will be utilized in this research due to their phase change temperatures being, 25⁰C, 27⁰C, 

and 29⁰C respectively, close to the human comfort level [3].  The bulk material will be 

used for direct incorporation into cement pastes, and impregnation into lightweight 

aggregates. Both PT 25 and PT 27 have a specific gravity of 0.85 while PT 29 has a 

specific gravity of 0.86. 

Table 0-2: Material thermal properties of Pure Temp chosen for this research 

 

Onset and peak temperatures along with enthalpy values were determined using 

differential scanning calorimetry to be discussed in Section 3.3.1. 

3.1.3 Lightweight Aggregate 

The lightweight aggregate (LWA) used is provided by Stalite.  The fine lightweight 

aggregate has a specific gravity of 1.80, and water absorption of ~ 9%.  This aggregate is 

produced by heating pulverized pieces of slate in a kiln at around 2200 degrees 

Fahrenheit.  High temperatures turn the slate molten allowing all the gases to evolve 

forming small unconnected voids.  This aggregate will be used for the impregnation of 

Pure Temp PCMs for mortar mixes. 

PCM PT 25 PT 27 PT 29

Onset (⁰C) 25.44 25.85 29.79

Peak (⁰C) 32.58 33.62 35.98

Enthalpy (J/g) 165.17 232.94 184.54
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3.2 Mixture Proportions and Sample Preparation 

Procedures for material preparation and mix proportions are discussed.  

3.2.1 Saturation of LWA 

Paraffin PCMs have very low thermal conductivity which can influence their ability to be 

an effective latent heat storage material; one way to improve this can be through 

impregnation into a more thermally efficient material such as LWA [24].  Furthermore, 

impregnation of PCM into LWA can potentially encapsulate the PCM reducing possible 

interference with the formation of hydration products. 

Saturation of LWA by three different PCMs, PT 25, PT 27, PT 29 was implemented 

using three methods: (i) 24 hour atmospheric pressure saturation at 32⁰C (to ensure that 

all the PCMS remain in a liquid state to facilitate penetration into the pores of the LWA), 

(ii) two hours of vacuum saturation followed by 24 hour atmospheric pressure saturation 

at 32⁰C, and (iii) 24 hour atmospheric pressure saturation at 40⁰C. Vacuum saturation was 

carried out using a vacuum desiccator set on a hot plate set to 60⁰C to maintain the PCM 

in the liquid phase. Once saturation is completed, the LWA was placed in strainers and 

left to drain at 32⁰C for two hours before being placed into an oven to dry for 24 hours. 

Two oven temperatures were utilized for the drying operation: 40⁰C and 60⁰C for 

methods (i) and (ii), while for method (iii) a drying temperature of 75⁰C was employed.  

 Specific gravity of this saturated LWA was found using the following equation:  

SGsaturated sand = 
   

    

     
 
    

     

                                                                                            (1) 
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Where SGPCM and SGLWA are the specific gravity for the PCM and LWA, respectively. 

The % PCM is the amount of PCM absorbed percentage into the LWA as obtained using 

the enthalpy of the LWA-PCM composite determined using DSC (Section 5.1.1). 

Specific gravity for the PCM was provided by the manufacturer, and the specific gravity 

and absorption of LWA was determined using the Arizona Department of Transportation 

(ADOT) ARIZ 211c (modification of AASHTO T84) method.  

The ARIZ 211c is used for the specific gravity and absorption of fine aggregate executed 

by the following steps: 1) 1200 gram represented sample is dried at 110 +/- 5⁰C to 

constant mass, 2) cover with water and permit to stand for 15 to 19 hours, 3) decant 

excess water and dry on a non-absorbent pad exposing the surfaces to a gently moving 

current of warm air, mixing frequently, 3) test sample by placing cone smoothly on the 

non-absorbent surface then proceed to add sand loosely in the mold until it is overflowing 

from the top and then lightly tamp for 25 times, if one side of the fine aggregate slumps 

when the mold is removed it is considered surface dry, 4) measure and record mass a 

pycnometer filled to its calibration capacity, 5) partially fill with water and introduce 

500+/- g of saturated surface-dry fine aggregate, 6) fill with 90% the total capacity, roll 

and invert pycnometer to release all air bubbles, then fill to 100% capacity, 7) measure 

mass of the filled pycnometer, 8) empty out fine aggregate and dry to constant mass at a 

temperature of 110 +/- 5⁰C, measure mass of dried sample. Finally calculations for bulk 

oven dried, bulk surface saturated dry, and apparent specific gravity can be done along 

with the percent absorption.  
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3.2.2 Coating of LWA 

A cement paste having a water-to-cement ratio (w/c) of 0.75 was used to coat the PCM 

saturated sand, which would allow for complete encapsulation.  It was placed in a strainer 

which was then vibrated to ensure LWA grains remained separate while being coated. 

The resulting aggregate was then spread over parchment paper, and was allowed to dry in 

ambient conditions covered for 72 hours before being stored.  The specific gravity of the 

LWA with cement paste coating was determined using the specific gravities of the LWA 

+ paste and PCM based on percentage as follows utilizing the combined specific gravity:                                                                                                                     

SGcoated sand = 
   

    

     
 
 (         )

  (         )

                                                                                  (2) 

Where SGPCM and SGLWA+Paste are the specific gravity for the PCM and LWA+paste, 

respectively. % PCM was found through enthalpy results using DSC. SG(LWA+paste) of  

was determined by the same method presented above (ARIZ 211c). 

This coated saturated sand specific gravity was used for the mix designs for the mortars. 

3.2.3 Mortar Mixes 

Specific gravities (SG) that were used for mix proportions were based on MSDS 

documents (PCM), ARIZ 211c (LWA & LWA+ paste) and Eq. 1 (saturated sand) and 2 

(coated saturated sand) as shown in Table 3-4. 
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Table 0-3: Specific gravity of materials used in mortar mixes 

 

 

Mortars were prepared using a commercially available Type I/II OPC, water, LWA, and 

PCM. Mixture proportions were completed such that the cement volume was held 

constant; the sand volume fraction was 50% and a constant of w/c 0.4 by mass.  The 

amount of PCM was set to be that in the coated sand volume.  This mixture proportioning 

resulted in a PT 25 and PT 29 volume fraction of 5.97% and 3.94% respectively.  A 

reduction in volume fraction of saturated LWA would be done utilizing thermal enthalpy 

results in order to keep the mix proportioning for PCM volume constant by using plain 

LWA as a percentage of the total sand volume. A summary of the mix design used in this 

study is presented in Table 3-5.   

Cement 3.15

Water 1

LWA 1.65

Saturated LWA (PT 25) 1.44

Saturated LWA (PT 29) 1.5

Coated LWA (PT 25) 1.5

Coated LWA (PT 29) 1.55

PT 25 0.86

PT 29 0.85

Specific Gravity 
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Table 0-4: mix proportions by volume in mL for 100 g samples size 

  
 

3.2.4 Cement Paste Mixes 

Specific gravities used in mixture proportioning for cement paste mixes were used as 

provided by the MSDS. 

Table 0-5: Specific gravity for materials used in cement paste mixes 

 

Cement pastes were prepared with commercial Type I/II OPC, water and liquid PCM. 

Cement volume was held constant along with water content, such that the PCM was 

added as an additional volume to the mix. Table 3-7 presents the mix proportions by 

volume. 

Mixture
OPC 

(w/c 0.4)

PT 25 

Sat 

Sand

PT 25 

Coated 

Sand

PT 25 

(5.97%)

PT 29 

Sat 

Sand

PT 29 

Coated 

Sand

PT 29 

(3.94%)

Cement 22.68 22.68 22.68 22.68 22.68 22.68

Water 28.57 28.57 28.57 28.57 28.57 28.57

LWA 51.25 32.35 ---- 48.19 ---- 49.23

Saturated 

LWA (PT 25)
---- 18.89 ---- ---- ---- ----

Saturated 

LWA (PT 29)
---- ---- ---- ---- ---- ----

Coated LWA      

(PT 25)
---- ---- 51.25 ---- ---- ----

Coated LWA     

(PT 29)
---- ---- ---- ---- 51.25 ----

PT 25 ---- ---- ---- 3.06 ---- ----

PT 29 ---- ---- ---- ---- ---- 2.02

----

----

----

----

----

19.69

22.68

28.57

31.55

Cement 3.15

Water 1

PT 25 0.86

PT 29 0.85

Specific Gravity 
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Table 0-6: mix proportions by volume in mL for 100 g samples size 

 

3.2.5 Synthetic Pore Solution 

The synthetic pore solution made was prepared using the methodology as proposed by 

Mammoliti and as modified from Berke and Hicks [36].  The synthetic pore solution 

consists of 0.6 M KOH, 0.3 M NaOH, and 12.50 g of solid Ca(OH)2 per liter of solution 

[37].  

PT 25 was added in 10% and 30% by volume additionally to determine if there are any 

chemical, thermal or bonding changes occurring in the pore solution in presence of 

PCMs. 

3.3 Test Methods 

Testing methods used are discussed with a brief background on the method. 

3.3.1 Differential Scanning Calorimetry 

A Perkin Elmer DSC 6000 was used to carry out DSC studies on pure PCM, pastes, 

saturated LWA and coated LWA to determine the onset and peak temperatures (⁰C) and 

the enthalpy of the material (J/g) during phase change.  This is a thermo-analytical 

technique that measures the heat released (exothermic) or heat absorbed (endothermic) 

during temperature scans.  DSC is commonly used to determine material characteristics 

w/c 0.3

w/c 0.3: 

10% PT 

25

w/c 0.3: 

30% PT 

25

w/c 0.3: 

30% PT 

29

w/c 0.5 w/c 0.7

w/c 0.7: 

10% PT 

25

Cement 24.42 24.42 24.42 24.42 21.16 18.67 18.67

Water 23.08 23.08 23.08 23.08 33.33 41.18 41.18

PT 25 ---- 4.75 14.25 ---- ---- ---- 5.99

PT 29 ---- ---- ---- 14.25 ---- ---- ----
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such as glass transition temperature, phase change temperatures, and heat of fusion [21]. 

Sample sizes ranged from 13.0 mg to 30 mg. The thermal method used included a 

temperature sweep heating the sample from -20⁰C to 60⁰C followed by a ramp down 

cooling the sample from 60⁰C to -20⁰C in a pure nitrogen environment at a rate of 

5⁰C/min.  One complete heating/cooling cycle was completed for all samples twice.  The 

equipment used is very sensitive and can detect heat flows in the range of    175 mW 

with an accuracy of   2.0% and precission of 0.1%. However, DSC measurements do 

have some draw-backs, such as a small sampling size that may not reflect the bulk 

material.  PT 25, PT 27, and PT 29 scans with the peak temperature and enthalpies 

labeled are shown Figure 3-1. 

 
Figure 0-1: DSC heating and cooling scans for PT 25, 27, & 29  

The above figures demonstrate the heat flow experienced by the samples for a single 

heating/cooling cycle. The peaks seen are where phase change is occurring, with the 

onset temperature labeled above. The enthalpy was calculated using the area under the 

peak portion of the curve. The heating portion shows results of the onset range for each 
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material that conforms to the manufacture specifications.   During the cooling scan it is 

clear that there is a temperature shift as the phase changes from liquid to solid. Lower 

surface temperatures would cause for a decreased time in completion of solidification. 

Thermal conductivity plays an important role in the solidification process and materials 

with lower thermal conductivity will delay the solidification process [38, 39]. 

3.3.2 Isothermal Calorimetry 

Isothermal calorimetry is used to study the heat release of an exothermic reaction, such as 

cement hydration, overtime. The heat release signature can be indicative of changes in 

the reaction kinetics as well as degree of hydration due to variation in the mix design. 

These studies were performed on mortars and pastes over a 24 hour period at a 

temperature of 32⁰C to ensure the PCM would remain a liquid.  Duplicate samples 

weighing approximately 200 g were tested for the mortars an 100 g for pastes were 

tested.   

All mix materials were stored in an oven set to 38⁰C 24 hours in advance to mixing. 

Mixing was also conducted in this oven with the samples being loaded no later than 5 

minutes after the addition of water. This method of oven storage and mixing was utilized 

to negate the loss of the dissolution peak that occurred during the time when samples 

mixed in ambient lab conditions (~25⁰C) were being heated to 32⁰C in the calorimetry. 

3.3.3 Thermal Conductivity 

Thermal conductivity experiments were run on the mortar mixes to find the thermal 

coefficient, using the test apparatus as pictured in Figure 3-2.  
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Figure 0-2: Thermal conductivity apparatus  

This cylindrical specimen apparatus was first developed in 2006 by the National Center 

of Excellence (NCE) at Arizona State University and was later modified in 2011 to test 

with a larger cartridge heater with a diameter of 1.91 cm to be used for testing 10.2 cm 

diameter by 17.8 cm height cylinder samples [40].  Data measurement was collected via a 

National Instruments Data Acquisition (DAQ) system, using a virtual instrument (VI) 

created via LabView to store the temperature readings from the thermocouples. The 

equation used to calculate thermal coefficient is as follows:       

    
(  )   (     )

     (      )
                                                                                                               (3)                     

Where: V is 19.95 volts from the cartridge heating source, and I is 0.72 A the current 

from the heating source, and T1 is the temperature at the inner radius of the cylinder 

sample as produced by the heating cartridge. Where: r2 and r1 are the outer and inner 

radius of the cylindrical samples, respectively and T2 is the surface temperature of the 

cylinder. 

The test was conducted over six hours with data recorded every minute from the 

thermocouples.  Results were plotted as the inner radius temperature (T1) vs. normalized 
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thermal conductivity.  Normalized conductivity was calculated using the current thermal 

conductivity (k) divided by initial conductivity (ko). 

Normal thermal conductivity of lightweight concrete is reported to range from 0.4 and 

1.89 W/m/K [41]. This range is dependent on a variety of conditions, such as type of 

aggregate, moisture condition and temperature [41].  

All samples were moist cured for 10 days before being cut and cored and then air dried 

for 4 days before being tested. 

3.3.4 Compressive Strength Testing 

Compressive strength testing was performed on mortar and paste cubes in accordance 

with ASTM C 109. Three cubes with dimension of 5.08 cm were moist cured (~95% RH) 

in a chamber for 24 hours before being de-molded. The cubes were then placed back in 

the chamber until the desired testing age. Mortar cubes were tested at 3, 14 and 28 days. 

Cement paste cubes were tested at 3 days and 28 days. This test was done with the intent 

of comparing the effects of PCM on the mechanical properties of the mortar and paste.  

3.3.5 Fourier Transform Infrared Spectroscopy 

Fourier transform infrared (FTIR) spectroscopy was performed on a Mattson Genesis 

FTIR fitted with a diamond-headed attenuated total reflectance probe. FTIR is a method 

of infrared (IR) spectroscopy, where IR radiation is passed through a sample and some of 

the IR radiation is absorbed and some is transmitted (passed through). The resulting 

spectrum represents the signature of the microstructure of the sample. This makes FTIR 

useful to analyze any bonding that may be occurring in cementitious systems due to 
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PCM. Three replicates for each sample were completed. Pure PCM, Stalite LWA and 

mortars at 3, 14 and 28 days samples were taken and their spectrums were analyzed. The 

synthetic pore solution was tested at 1, 1, 14 and 20 days.  

The FTIR spectra for PT and Micronal are presented in Figure 3-4. 

    

Figure 0-3: FTIR Spectrum for PT and Micronal  

All peaks appear below 3000 cm
-1

, meaning PT is a saturated hydrocarbon [42]. There 

are three peaks at the wave numbers of 2951 cm
-1

, 2915 cm
-1

, and 2847 cm
-1

 

corresponding to the asymmetrical vibration of the –CH3 functional group, -CH2 

functional group and the symmetrical vibration of the –CH2 functional group, 

respectively.  The wavenumber around 1730 cm
-1

 is the stretching vibration of the carbon 

double bonded with oxygen. The peaks in the range at 1462 cm
-1

 for PT correspond to the 

–CH2 and –CH3 deformation vibration. The single bond carbon – oxygen stretching 

vibration appear around the range of 1160 cm
-1

. CH2 rocking absorption band is at720 

cm
-1

. The –CH2 peaks are much intense than the first peak representing –CH3, signifying 
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that there are more –CH2 molecules than –CH3. The FTIR spectrum for PT reveals that it 

has the same bonding present in paraffin. 

  
 Figure 0-4: FTIR Spectra from Stalite LWA    

The FTIR spectra for Stalite LWA indicated three distinctive peaks at 1472 cm
-1

, 1001 

cm
-1

 for Si-O and Al-O stretching, and 776 cm
-1

. 

3.3.6 Mercury Intrusion Porosimetry 

Mercury intrusion porosimetry is a method used to determine information about the pore 

structure of a porous sample. Mercury is injected into a sample at a varying pressure, and 

the Washburn equations used to relate the intruded volume and pore diameter. MIP 

measurements were performed on hardened cement pastes at ages of 3 and 28 days using 

a Quantachrome PoreMaster instrument with a maximum intrusion pressure of 414 MPa. 

Duplicate samples of approximately 0.7 g were loaded in the 0.5 cc sample cells. MIP 

measurements have been shown to have several limitations, including the necessity of 

drying or otherwise preparing samples which may result in changes to the pore structure, 

possible inaccuracies in pore volume measurements due to the so-called “ink bottle” 

effect, wherein a large with a small entryway is considered a large volume of the smaller 
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diameter pore due to the high pressure required for mercury to enter the passage [43, 44, 

45]. Further, in some samples, the high pressures present in MIP measurements may 

result in localized fracture and pore collapse [45].  

3.3.7 Thermogravimetry Simultaneous Thermal Analysis 

Thermogravimetric studies measure the weight loss associated with heating a sample 

over a defined range. In cementitious materials, the weight loss is primarily associated 

with the loss of free water from the pore solution, the dehydroxylation of both calcium 

hydroxide and C-S-H gel, as well as the decarbonation of carbonates present. TGA-STA 

measurements allow for the combined determination of both the weight loss and the heat 

flow as the sample is heated over the selected range. These heat flow measurements often 

result in specific peaks that are indicative of the reactions presented above. Based on 

these measurements, TGA-STA can be used to determine the degree of hydration of a 

sample based on the amount of various hydration products that have formed. TGA-STA 

experiments were completed using a Perkin Elmer STA 6000 with samples taken from 

the core of cement paste samples cured for 3 and 28 days under sealed conditions at 

ambient temperature. A thermal procedure consisting of heating the sample at a rate of 

15°C/min over a temperature range from approximately 50°C to 1000°C was utilized. 
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INFLUENCE OF PCM ON MECHANICAL AND THERMAL PROPERTIES OF 

CEMENT PASTE 

 

4.1 Introduction 

The goal of this chapter is to gain a better understanding of the mechanical and thermal 

changes occurring when PCM is directly added to cement paste. Testing on mechanical 

effects was executed: (i) MIP analysis was completed to understand how the micro- 

structure of the paste is changing, and (ii) compressive strength testing to understand the 

strength decrease. Isothermal calorimetry was completed looking at the heat evolution 

during hydration, and TGA-STA was completed to find the amounts of hydration 

product, and PCM in the system at varying ages. DSC was a tool used for the thermal 

efficiency of the material. Finally FTIR analysis on PCM interaction with synthetic pore 

solution was done to better understand the interaction between the two. 

4.2 Mixing Process 

Cement pastes with w/c 0.3, w/c 0.7 and 0.5 were used in the mix design in order to 

understand the affects between PCM in cement pastes with varying w/c, thus varying 

pore sizes, and conditions of the pore solution.  

All mixes were done using ordinary portland cement (OPC) and bulk non-encapsulated 

PCM, in order to better understand the effects of direct PCM incorporation in 

cementitious systems. 

During mixing some things became apparent that would affect the ability to use certain 

mix designs. A mix with a w/c 0.7 and 30% PT 25 by volume was attempted, but the PT 

25 and the water would not mix with the cement. Once cement particles are coated with 

PT it becomes hydrophobic and will repel water, conversely when cement particles are 
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coated in water it repels PT 25. The water and PCM quantities were high enough that 

there was excessive liquid in the system. The result of this was a non-homogeneous mix, 

that when cured results in a low w/c past and a separated liquid of water and PCM. This 

mix was then discarded from further study. Optimal PCM introduction with w/c is very 

important because the liquid to powder ratio cannot be to high. 

4.3 Compressive Strength Results 

Compression testing was done on 7 different cement pastes. All mixes with PT 25 or PT 

29 showed a decrease in strength at seven days but increased in strength by 28 days.  

  
a)                                                                       b) 

 

Figure 0-1: Compression strengths for a) w/c 0.3 mixes; b) w/c 0.5 and w/c 0.7 mixes 

 

Mixes with 30% PT 25 or PT 29 had a larger strength decrease, over 50%, in comparison 

to the control at three days. All OPC mixes with 30% PT had a drastic decrease at 28 

days, w/c 0.3 with 30% PT 25 at a 63% decrease at 3days, but an overall 80% decrease 

seen at 28 days, and w/c 0.3 with 30% PT 29 decreasing 52% at 3 days to 80% at 28 
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days.  This shows that the PCM at 30% dosage in plain OPC mixes affects the long term 

strength development as well as early strength.  

The decrease in strength can be attributed to the following: (i) the PCM’s reaction with 

hydration products, (ii) reduction in the heat of hydration which contribute to earlier 

strength development [46] and (iii) changes to the pore structure.  

It is a well-known fact that PCM does interact with C-S-H formation thus reducing 

strength [20, 24, 33]. This is due to the long chains of PT wraps around cement particles 

that cannot react to water [47] in addition to these cement particles unable to react they 

cannot be used as a nucleation point.   

PCM also reduces the peak hydration temperature of the cement due to its thermal 

storage capabilities, this can be used to control thermal stresses and cracking which 

would help for long term strengths, but reducing the peak hydration will affect the early 

age strength [24]. The effects of PCM on hydration temperature and time will be further 

discussed in Section 4.5 using isothermal calorimetry. 

Pore structure plays a factor in the mechanical strength of a cement paste. An OPC mix 

with a higher w/c will have greater pore volume and a larger critical pore diameter and 

lower compressive strengths.  The addition of liquid PCM plays two main roles in 

effecting pore structure: (i) the addition of more liquid in the form of PCM into the mix 

increases the volume, and (ii) the reduced hydration keeps pores large and free of 

hydration products. MIP testing was executed in order to better understand the changes in 

pore structure; further discussion will be done in Section 4.4. 
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4.4 MIP Results 

MIP testing was done on samples of all pastes at ages of 3 and 28 days to determine the 

pore volume of the paste. The MIP results for both intruded volume and critical pore 

diameter are in Figure 4-2 for the cement pastes after 3 days of curing.  

 

 
                                                                         a)         

  
a)                                                                  c) 

Figure 0-2: 3 day OPC mixes; a) mercury intrusion volume; b) pore size distribution for 

w/c 0.3; c) pore size distribution for w/c 0.5 and w/c 0.7 

 



  35  

The volume intrusion as seen in Figure 4-2 a) ranged from, 0.07 cc/g for w/c 0.3 to 0.225 

cc/g for w/c 0.7 with 10% PT 25. Figures 4-2 b) & c) illustrate the pore size distribution 

of the various mixes tested in this project, with the critical pore diameter indicated by the 

first major peak on these plots when looking from the smallest to largest pore sizes [48]. 

The critical pore diameter in considered to be an indicator of pore structure. Table 4-1 

shows all the results for the intruded volume and critical pore sizes for each mix. 

 

Table 0-1: Cumulative volume and critical pore sizes for pastes at 3 days 

 

The lower w/c contents such as w/c 0.3 and w/c 0.5 both were shown to have a smaller 

intruded volume and critical pore diameter to the higher w/c 0.7 mix as predicted [49]. 

Mixes with the additional PCM volume were seen to have a larger intruded pore volume 

and pore threshold size than the corresponding control mixes. Mixes with 10% PT 25 

showed similar pore size threshold as the control. W/c 0.3 and w/c 0.3 with 10% PT 25 

showed a difference of critical pore diameter of 0.003 µm. W/c 0.7 and w/c 0.7 with 10% 

PT 25  had a pore diameter size increase of 0.1 µm. Both w/c 0.3 mixes with 30% PT an 

increase in the critical pore size diameters of 0.285 µm for PT 25 and 1.985 µm for PT 

29, this is most likely due to the PCM causing a structural rearrangement of the packing 

density [25]. The mixes with PCM showed higher intruded volumes and pore distribution 

3 days w/c 0.3

w/c 0.3: 

10% PT 

25

w/c 0.3: 

30% PT 

25

w/c 0.3: 

30% PT 

29

w/c 0.5 w/c 0.7
w/c 0.7: 

10% PT 25

Cummulative 

Volume (cc/g)
0.07 0.08 0.15 0.17 0.15 0.218 0.225

Critical Pore 

Size (µm)
0.015 0.018 0.3 2 0.2 0.9 1



  36  

because cement particles coated in PT could be used for cement hydration and could not 

be used as a surface for nucleation. This causes for less hydration products to form thus 

unable to fill the pore spaces. In addition the PCM was introduced into the mix as a liquid 

and thus increased the cement powder to liquid ratio. 

At 28 days all PT mixes had higher intruded volumes than the control except for w/c 0.7 

with 10% PT 25 mix. Volume intruded was substantial lowered based on more hydration 

products forming and thus pore sizes decreasing [49]. The range of intruded volume at 28 

days ranged from 0.065 cc/g for w/c 0.3 to 0.19 cc/g for w/c 0.7 as seen in Figure 4-4 a). 

 

        a) 
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b)                                                                 c) 

Figure 0-3: 28 day OPC mixes; a) mercury intrusion volume; b) pore size distribution for 

w/c 0.3; c) pore size distribution for w/c 0.5 and w/c 0.7 

 

Table 0-2: Cumulative volume and critical pore sizes for pastes at 28 days 

 

The critical pore diameters for w/c 0.3 and w/c 0.3 with 10% PT 25 are 0.013 µm and 

0.017 µm, respectively.  A change in pore size distribution with curing age for w/c 0.3 

was -0.002µm while the mix with 10% PT 25 was -0.001µm. There was a drastic shift in 

the critical pore size for w/c 0.7 from 0.9 µm at 3 days to 0.06 µm at 28 days, similar 

shifts in seen for both w/c 0.3 mixes with 30% PT, w/c 0.5, and w/c 0.7 with 10% PT 25, 

this is attributed to the curing time allowing hydration products to grow in the pore space 

[49]. This makes sense because mixes with a lower w/c have smaller pore size at early 

28 days w/c 0.3

w/c 0.3: 

10% PT 

25

w/c 0.3: 

30% PT 

25

w/c 0.3: 

30% PT 

29

w/c 0.5 w/c 0.7
w/c 0.7: 

10% PT 25

Cummulative 

Volume (cc/g)
0.065 0.07 0.135 0.115 0.1 0.19 0.15

Critical Pore 

Size (µm)
0.013 0.017 0.04 0.04 0.02 0.06 0.1
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ages, and less water to be used for initiation of hydration, meaning that the hydration 

process takes less time to fill these pores enough to slow the rate of pore size decrease.             

4.5 Isothermal Calorimetry Results 

Five mixes were analyzed for isothermal conductivity: OPC w/c 0.3, OPC w/c 0.7, OPC 

w/c 0.3 with 10% PT 25, OPC w/c 0.3 with 30% PT 25, and w/c 0.7 with 10% PT 25. 

Isothermal calorimetry is used to monitor the heat evolution and determine an 

approximate degree of hydration due to the exothermic nature of the cement hydration 

reaction. C3S and C3A have a high exothermic heat release of approximately -137.6 

kJ/mol and -248.3 kJ/mol while the formation of C-S-H has a relatively low heat release 

of (-20 kJ/mol) [30]. 

 

  
a)                                                           b) 

Figure 0-4: Isothermal heat flow and cumulative heat flow for mixes noted. 

 

The dissolution peaks as seen in the first few minutes is due to the rapid heat release that 

occurs when the cement minerals are dissolving and reacting with water to form the 

amorphous layer of hydration product around the particles, thus keeping the particles 

from further reacting. Mixes with PT had a lower heat flow during the dissolution period; 
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this is due to the long chains of PT wraps around cement particles that cannot react to 

water [47].   

The acceleration period is when C3S is hydrating and the rate of hydration is controlled 

by the rate of nucleation and growth of the hydration products.   

 In addition the maximum reaction heat flow is lower in mixes with PT 25, thus showing 

suppression of hydration. Between w/c 0.3 and w/c 0.7 there is a difference in reaction 

due to the dilution occurring to the excess mix water in w/c 0.7 OPC paste. As PT 25 is 

added into pastes it is seen that there is a clear depression in the heat flow, this depression 

gets greater as more PT 25 added as seen by the differences in w/c 0.3 with 10% PT 25 

and 30% PT 25, this is partially due to the dilution affects similarly seen with a high w/c 

OPC. 

Cumulative heat flow experienced at 24 hours indicates that the heat of hydration in the 

cement pastes with PT 25 is lower. The PT 25 is also delaying hydration as discussed 

above which will in turn affect early age strength development but can help with thermal 

stresses [24].      

4.6 DSC Results 

DSC analysis was performed on each paste mix at ages 3 and 28 days. All 3 day results 

had peak temperature occurring in the range of 29⁰C to 30⁰C for PT 25 and 31⁰C to 32⁰C 

for PT 29. These results are expected due to the adaption of the PT in the cement 

increasing phase change transition temperature. 
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a)                                                                        b) 

 

Figure 0-5: Heating and cooling scans at 3 days for a) w/c 0.3 mixes and b) w/c 0.5 and 

w/c 0.7 mixes 

The phase change temperature was increased for PT 25 from 25.44⁰C in bulk condition 

up to 30⁰C in paste mix, while mix with PT 29 saw a smaller increase in the phase 

change temperature; this is due in part to the confinement in the pore structure. This is 

explained by Clapeyron equation (Equation 3) which will be further discussed in Section 

5.1.1. 

Table 0-3: Enthalpy and efficiency percentages for cement pastes at 3 days 

(efficiency of the mixes was calculated by the enthalpy of the mix over the theoretical 

enthalpy for the percentage by mass of PT in the mix. Name for each mix is in percentage 

of volume of PT added) 

 

3 days
Pure 

PT 25

 Pure  

PT 29

w/c 0.3: 

10% PT 25

w/c 0.3: 

30% PT 25

w/c 0.3: 

30% PT 29

w/c 0.7: 

10% PT 25

Enthalpy 

(J/g)
165.17 184.54 0.22 4.14 3.84 6.7

Efficiency 

(%)
---- ---- 3.40 23.00 21.53 82.87
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The w/c 0.7 mix with 10% PT 25 by volume had the greatest efficiency, when compared 

to the w/c 0.3 mixes with PT. The higher efficiency can be attributed to the higher water 

content in the system is allowing for better thermal conductivity allowing nearly all the 

PT to phase change in the system. 

Reduction in enthalpy continued with curing age as further illustrated by and DSC results 

at 28 days, which had a more significant enthalpy reduction.  

  

a)                                                                         b) 

Figure 0-6: Heating and cooling scans at 28 days for a) w/c 0.3 mixes and b) w/c 0.5 and 

w/c 0.7 mixes 

The phase transition temperature for solid-liquid change shifts drastically between 3 and 

28 days. At 3 days the phase change temperature is around 30⁰C while at 28 days it is 

around 25⁰C. This can be attributed to PCM confinement into a larger volume of smaller 

pores, because as the temperature begins to rise above the solidification point the PCM in 

smaller pores will begin to absorb latent heat at lower temperature than the PCM in the 

larger diameter pores [20]. The critical pore size decreases with curing age as seen in 

Section 4.4 this is one physical reason for reduction in enthalpy as seen at aging. 
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Efficiency results at 28 days were less than 3%, as seen below in Table 4-4. This is a 

drastic decline in efficiency which makes direct incorporation of PCM into paste not 

effective for increasing the thermal energy storage of concrete. 

Table 0-4: Enthalpy and efficiency percentages for cement pastes at 28 days 

 

The percentage efficiency for the mixes was determined using enthalpy results from DSC 

scans, and taking the ratio of this result with percentage of mass of pure PCM that was 

added to the system. The mix incorporating 10% PT 25 into w/c 0.7 paste shows a greater 

efficiency than the lower w/c mixes, this can be attributed to the thermal conductivity of 

the water in the system aiding in the phase change capabilities of the PCM. There are 

several possible causes to this reduction including: the interaction with the pore structure 

[50], and the high thermal resistance attributed to the paste, which may hinder the heat 

transfer to the interior surfaces, thus causing melting to occur only near the heat sources. 

Studies have shown that there can be an interaction between the PCM and the cement 

[24]. Paraffins are non-polar alkane where carbon and hydrogen atoms are linked via 

single bonds, making it chemically stable and less prone to hydrogen bonding. Paraffins 

are composed of linear chains where the end carbon atom has three hydrogen atoms while 

the interior carbon atoms have two hydrogen atoms as shown below, Figure 4.7. 

28 days
Pure 

PT 25

Pure  

PT 29

w/c 0.3: 

10% PT 25

w/c 0.3: 

30% PT 25

w/c 0.3: 

30% PT 29

w/c 0.7: 

10% PT 25

Enthalpy 

(J/g)
165.17 184.54 0.12 0.38 0.27 0.22

Efficiency 

(%)
---- ---- 1.85 2.11 1.35 2.72



  43  

 

Figure 0-7: Chemical structure of Paraffin [2] 

This reduction could be due to a random cross-linking of PT with CSH and other cement 

hydrates in the cement matrix similar to the study by Montserrat et al. of cross linking of 

Epoxy-diamine resins [51]. Enthalpy relaxation in epoxy-diamine resins was found to 

increase as the crosslinking lengths increased in the rate at which enthalpy relaxation 

occurred, additionally as annealing time increased more enthalpy relaxation would occur 

[51].  

Enthalpy relaxation is thought to occur when there is a cooperative rearrangement of 

some of the molecular entities, specifically in the main-chain molecular segments in the 

case of linear polymers according to the Adam-Gibbs theory [52]. A study on enthalpy 

relaxation studies of polymethyl methacrylate networks with varying crosslinking 

degrees that the greater the cross linking density the higher the reduction in enthalpy [53].  

A study performed by Dondi et al. analyzed silica crosslinking with polybutadiene and 

styrene-butadiene (SBR). Cross linking in this system occurs primarily through 3 stages; 

i) absorption of radiation energy in the silica particles followed by exciton migration at 

the surface, (ii) reaction at the surface of excited silica with absorbent SBR chains 
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leading to silica bonded free radicals, (iii) crosslinking of SBR initiated from grafted 

radicals [54].  Other methods can cause exciton migration and thus excitation in an atom 

such as: (i) thermal, (ii) chemical, (iii) pressure, or (iv) radiation.  

This indicates that the significant reduction in enthalpy with these pastes is likely 

attributed primarily to cross linking of the PCM with the cement hydrates, primarily the 

silica in CSH. In addition there are physical interactions imposing depression effects on 

the latent heat storage conditions: (i) the latent heat of the confined PCM is experiencing 

non-freezing layers at the interface of the cement matrix [34], and (ii) an amount of 

confined PCM may not be taking part in the phase transition and thus would cause a 

depression in the latent heat [55]. 

The thermal efficiency with curing age is plotted below. It is clear from this plot that as 

the age increases there is a reduction in thermal efficiency. 

 

Figure 0-8: Thermal efficiency at varying curing ages 
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This can be attributed to a combination of things: (i) the crosslink density is increasing, 

(ii) as hydration progresses more pressure is placed upon the PT in the pores, and (iii) the 

thermal resistance of the paste is increasing with time as hydration products form.  

4.7 TGA-STA Results 

TGA-STA will be utilized for analysis of the thermal stability of the pure PT 25, pure 

Ca(OH)2, a mix of Ca(OH)2 with 30% PT 25 by volume at 11 days after mixing and 

cement pastes at 3 and 28 days of curing. 

Figure 4-9 presents the thermal degradation of PT 25, Ca(OH)2 and a mixture of Ca(OH)2 

with 30% PT 25 by volume at 11 days.  

  

a)                                                          b) 

Figure 0-9: 3 day TGA a) weight loss (%) & b) mass loss rate for pure PT 25, pure 

Ca(OH)2, and 30% PT 25 + Ca(OH)2 at 11 days.  

95% of the weight of PT 25 was loss due to evaporations between 190⁰C and 320⁰C. This 

is where the PT is oxidizing [56]. By visual observation there was no sample left in the 

crucible after testing, just a thin residue at the bottom. Pure Ca(OH)2 experiences higher 
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rate of mass loss between the range of 450⁰C to 550⁰C due to the dehydroxylation of 

Ca(OH)2. There was a total weight loss of ~25% for pure Ca(OH)2. The pure PT 25 and 

Ca(OH)2 composite had a total mass loss of ~ 34%. Converting the percentage of PT 25 

added by volume into mass of the complete sample the PT 25 is ~ 10% by mass. The 

mass loss difference between the pure Ca(OH)2 and the sample with PT 25 and Ca(OH)2 

can be accounted as the evaporation of PT 25 from the system. There were two distinct 

changes in the mixed sample when compared to the pure samples: From the rate of mass 

loss plots it is clear that the temperature span that the oxidation of PT occurs is smaller 

from 190⁰C to 250⁰C and the rate of mass loss during the dehydroxylation period 

increased in the lower temperature range from 450⁰C to 490⁰C.   This shows that the mass 

loss associated with PT in the system begins to extend into the mass loss associated with 

dehydroxylation of Ca(OH)2. This makes the mass loss associated with PT and the mass 

loss associated with Ca(OH)2 diffucult to distinguish from one another and thus hard to 

analyze for the amount of hydration products in the system via TGA-STA. In addition PT 

oxidizes in the same range as the evaporation of water in the system, making it difficult 

to separate those two events also. 

There are three distinctive peaks in the dm/dt plots for pates at 3 days, around 100⁰C, 

450⁰C, and 680⁰C, respectively. The mass loss seen before 300⁰C, is indicated by the first 

peak at 100⁰C. For OPC, this is attributed to the loss of free water within the pore 

structure of the paste as well as some water loss due to water bound to C-S-H. The mass 

loss between the range of 450⁰C to 550⁰C is the dehydroxylation of Ca(OH)2 and the 

mass loss between the range 700⁰C to 900⁰C is the decarbonation of CaCO3.  
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a)                                                                          b) 

Figure 0-10: 3 day TGA mass loss rate for OPC mixes  

It is notable that with the mixes at 3 days curing with PCM have a fourth mass loss peak 

around 220⁰C is associated with the mass loss of  PT as it is evaporating from the system 

from 190⁰C to 320⁰C. 

Again there is an increase in the rate loss seen in the range for dehydroxylation of 

Ca(OH)2 this is due to the PT in the system evaporating at a higher temperature due to 

cross linking with the Ca(OH)2 in the pore solution. Further analysis of PT interaction 

with the pore solution will be discussed in Section 4.8. 
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Figure 0-11: 28 day TGA weight loss % for OPC mixes  

All PCM mixes show the similar trend of having a larger weight loss at the 450⁰C 

temperature range. At 28 days thermal analysis of the OPC samples shows a peak in the 

rate of mass loss around 220⁰C is not seen for any mixes with PT. This mass loss rate 

shifts toward 420⁰C. This is due to PT and CaOH crosslinking and the cross linking 

density increasing and thus improving the thermal durability of PT. Further analysis on 

hydration products percentages were not possible due to the cross linking of PT and 

Ca(OH)2. 

4.8 Synthetic Pore Solution 

Synthetic pore solutions were prepared using and 10% and 30% of PT 25 was added to 

them by volume. These solutions were then mixed and specific quantities were stored in 

sealed vessels and kept in an incubator set at a temperature of 32⁰C. This temperature 

ensured that the PT 25 would remain in the liquid phase. The three samples were tested 

after storing in the incubator for 1, 5, 14 and 20 days.  

Each time a sample was tested, it was shaken to ensure the sample was as homogenous as 

possible. For days 1 and 5 the PT 25 remained mostly a liquid with a very small amount 
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of particulate matter in the solution, the samples were able to be shaken and able to be 

taken as a representative sample. At 14 days the precipitate amount had grown making 

incorporation a bit more difficult, especially for the small sample sizes used for DSC and 

FTIR. By day 20 the PT 25 had precipitated to the point that shaking and mixing the 

sample was insufficient to reincorporate it into the solution. The semi-solid mass of PT 

25 was white and gooey with the pore solution separated from the PT 25. Testing at 20 

days for both DSC and FTIR using the representative mixed solution was impossible so 

the PT 25 semi-solid was analyzed with added pore solution.  

4.8.1 FTIR 

FTIR was performed on the synthetic pore solutions to track the bonds and their 

occurrence over time. This was done in order to see if a break down in the PT 25 bonds is 

occurring or if new bonds are forming between the synthetic pore solution and PT 25. 

The –CH3 functional group peak as seen for pure PT 25 cannot be detected in the 

synthetic pore solution spectrum. Another interesting effect noted is that the CH2 rocking 

absorption peak is not detected until an age of 14 days.  
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a) 

  

b)                                                             c) 
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                           d)                                                                         e) 

Figure 0-12: FTIR Spectrum for a) pure PT; Pore Solution Mixes at b) 1 day, c) 5 days, 

d) 14 days, and e) 20 days 

 

There are three peaks attributed to plain pore solution; 3324 cm
-1

, 2109 cm
-1

, and 1639 

cm
-1

 at one day. The O-H bonds are represented by the wavenumber 3324 cm
-1

 and 1639 

cm
-1

. The peak around 3324 cm
-1

 shifts up in wavenumber for the mixes with PT 25, 

while the peak and the 1639 cm
-1

 peak shifts to a lower wavenumber when mixed with 

the PT 25. In addition as curing time increases the amplitude of the O-H peak at 1639  

cm
-1

 drastically decreases, this can be attributed to (i) the sample of material tested not 

being homogenous, or (ii) an effect of crosslinking of the bonds. The crosslinking could 

then be related to the results from TGA thus causing the PT evaporation peak to shift into 
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a higher temperature range causing it to merge with the temperature range associated 

with dehydroxlization of Ca(OH)2.   

The peaks associated with the –CH3 asymmetrical vibration cannot be detected at any 

age. The C-O and C=O stretching vibration peaks show no noticeable change with time.  

At 5 days the –CH2 and –CH3 deformation vibration peak starts to be seen at a wave 

number of 1460 cm
-1

. Over time this wavenumber is shifted up to 1466 cm
-1

 at 14 days, 

but by 20 days the wave number shifts back down to 1462 cm
-1

. The –CH2 and –CH3 

deformation vibration seems to stay stable overall in the mixes, while the –CH2 

functional group and the symmetrical vibration of –CH2 shift upward in peak from the 

pure condition of 2915 cm
-1

 to approximately 2922 cm
-1

, and 2847 cm
-1

 to 2852 cm
-1

. 

The –CH2 symmetrical vibration wavenumber does not change any with time, while the –

CH2 functional group sees a fluctuation in wave number with time.   

Changes in the –CH2 functional group can be due to the crosslinking affects as discussed 

in Section 5.5. 

4.8.2 DSC 

DSC was performed on the synthetic pore solutions at 3, 14 & 20 days. The purpose is to 

determine if and how the PT 25 is interacting with the synthetic pore solution and further, 

if there is a reduction in the thermal capabilities as seen with the directly mixed pastes. 

There is an enthalpy peak occurring when the water in the pore solution undergoes phase 

change from solid to liquid during the heating cycle. The smaller peaks seen around 25⁰C 

in the mixes with PT 25 are attributed with the phase change thermal properties. The 

following DSC scans cannot be accurately used to determine thermal efficiency. This is 

due the small sample sizes being unrepresentative of the mixture of pore solution and PT, 
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because as aging time continued at 14 and 20 days the PT began to precipitate into the 

pore solution and was unable to be mixed back as discussed previously. The following 

DSC scans then will be looked at for determination of if thermal degradation was 

occurring because of the pore solution as seen in the paste mixes DSC scans at 3 and 28 

days. 

 
Figure 0-13: DSC heating and cooling scan of pore solutions at 3 days 

 
Figure 0-14: DSC heating and cooling scan of pore solutions at 14 days 
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Figure 0-15: DSC heating and cooling scan of pore solutions at 20 days 

The phase change temperature of the mixes with PT 25 increased to around 30⁰C. This 

shift in phase transition shows that the thermal stability of the PT is increasing when 

mixed with the pore solution, thus allowing for a more thermally stable composite 

material that would cause the mass loss rates for evaporation of PT and dehydroxylation 

of Ca(OH)2 to overlap as age increases over time. 

This stayed consistent at all ages. The latent heat characteristics of the PT 25 remained 

even as the precipitate formed. This shows that enthalpy relaxation is not occurring due 

to pore solution interaction with PT in pastes, but this does not indicate that the physical 

nature of PT 25 is being changed as seen by the drastic shift in phase transition 

temperature and its appearance as an amorphous solid. These changes in PT material 

characteristics can play an increased role in the pressure and confinement effects 

discussed in Section 4.1.1. For instance: the amorphous PT is under increased pressures 

in the pores and thus experiences non-freezing layers at the interface of the paste matrix 
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[34], and an amount of the PT when confined may not be taking part in the phase 

transition and thus would cause a depression in the latent heat [55].  

 

4.9 Summary 

Direct incorporation of PCM into cement pastes poses many issues with the mechanical 

and chemical characteristics of both PCM and cement. Everything from the micro pore 

structure to the strength properties of the paste is altered in some way due to PCM 

integration. Strength decreases were attributed to the unhydrated cement particles 

becoming coated in PCM, which were unable to hydrate and could not be utilized as a 

nucleation surface. Pore volume intruded was higher at three days for PCM mixes 

because less hydration was occurring and the voids created by the water and PCM 

repulsing one another. Thermal characteristics of PCM-cement mixes were lower than the 

theoretical at 3 days, but practically nonexistent at 28 days, this is due to i) cross-linking 

of PCM with silica hydrates causing enthalpy relaxation, ii) physical effects caused from 

reduction in pore size, and iii) the formation of the semi-solid precipitate due to PT in the 

pore solution is changing the physical ability of the PCM to change phases completely in 

the pores.  Reduction in heat flow was seen in isothermal testing from the addition of 

PCM, suppression in hydration peak and retardation of the acceleration were observed for 

all mixes with PCM. Reaction of the PCM in a synthetic pore solution was analyzed 

showing that the PCM is combining with the Ca(OH)2 forming a thermally stable semi-

solid material as seen by DSC scans, furthermore no chemical reactions between the pore 

solution and PT were noted from the FTIR spectra meaning the crosslinking was purely 

physical. Further analysis needs to be done in order to better understand the cross linking 
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of PCM with CSH and the interaction of PCM with pore solution. Direct incorporation of 

bulk PCM during mixing of cement should not be attempted without proper 

encapsulation for the following reasons: (i) drastic strength decrease, and (ii) thermal 

degradation of PCM in the system thus making the purpose behind incorporation of PCM 

into cementitious systems null.  
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INFLUENCE OF IMPREGNATION OF PCM INTO LIGHTWEIGHT 

AGGREGATES ON THERMAL AND MECHANICAL PROPERTIES OF 

MORTARS 

 

5.1 Introduction 

The goal of this chapter is to gain a better understanding of the mechanical and thermal 

changes occurring when PCM is incorporated then utilized in a cement mortar. DSC was 

a tool used for the effective absorption through thermal efficiency of the incorporated 

PCM in LWA. Testing on mechanical effects was executed using compressive strength 

testing to understand the strength development. Isothermal calorimetry was completed 

looking at the heat of hydration. Testing for thermal efficiency of the mortar mixes was 

done using a cylindrical thermal conductivity device. Finally FTIR analysis on the mortar 

samples was utilized for analysis of chemical bonding of the system when PCM is added. 

5.1.1 Saturation Method 

The first method considered for impregnation of PCMs into LWA materials was the use 

of saturation. The saturation methodology and sample preparation strategies were 

presented previously in Section 3.2.1. This method included 24 hours of atmospheric 

pressure saturation and a 2 hour vacuum saturation method followed by 24 hours of 

saturation in atmospheric conditions, with 24 hours of oven drying at various 

temperatures. Investigation of the absorption for each method includes DSC 

measurements of the samples after PCM saturation. 

DSC measurements were performed on PCM saturated LWA sand samples to find the 

peak temperature of the phase change and enthalpy. Figure 5-1 below presents the results 

of the DSC study for PT 25 and PT 29 using the different saturation methods, as 

mentioned previously, and oven drying temperatures. 
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a)                                                                       b) 

    

c)                                                                    d)    

Figure 0-1: DSC heating and cooling scans for the 24 hr saturations methods 

using a) PT 25 & b) PT 29; vacuum saturation method for c) PT 25, & d) PT 29 

PCM confinement in pores leads to a broader DSC signal, with a tail in the low 

temperature region that increases in size inversely with pore size [55]. This broadening in 

the signal pushes the onset temperature to a lower temperature but the phase change takes 
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place over a larger span of temperatures, and because of this behavior phase transition 

temperature will be considered the temperature at the maximum value of the peak for 

LWA-PCM composites and the onset transition of the phase change transition.  

There is a notable shift in the phase change temperature between the LWA-PCM 

composites and the bulk PCM. PT 25 saturated LWA showed an increase in phase 

change temperature of 1 to 3
°
C and PT 29 saturated LWA showed a decrease of 1 to 3

°
C. 

Interactions between the pore surface and the PCM play a large role in change with phase 

transition range, this can be affected by i) physical means, such as pressure, and volume 

change and ii) physio-chemical means such as hydrogen bonding. When the PCM has 

strong interaction with the porous material the melting point will increase, conversely a 

weak interaction will reduce the phase change temperature [42]. Capillary forces between 

the PCM and lightweight aggregate pores can hinder movement of the PT chains during 

the solidification stage thus causing the PT to be amorphous while in its solid form rather 

than crystalline [57]. In addition, changes in phase transition can be attributed to the 

behavior of fluids changing phase in pores, which is dependent on the surrounding 

temperature and pressure, along with the geometry and the interaction with the crystal 

wall [42, 55, 58]. This behavior can be governed by the Clapeyron Equation (Equation 

3): 

  

  
   

  
   

  
   

                                                                                 (3) 

The following relationships are true: 
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p    
 

 
     ∴    p is inversely proportional for the critical pore radius of the LWA (0.005µm) 

p   200 µm
-1

 

Where, T is melting temperature, p is pressure, and   
    and   

    are the volume and 

enthalpy change during solid to liquid phase change, respectively. Volume change for 

paraffin has been found to be 0.12 – 0.16 ml/g in bulk conditions [42] and enthalpy 

change respectively. dT/dp will also be positive and as the pressure increases the melting 

temperature would increase. The volume change of the PCM in the pores leads to an 

increase in pressure during phase transition from solid to liquid, which leads to an 

increase in the melting temperature [42].  

Assuming   
    = 0.14 ml/g for both PT 25 and PT 29 in the bulk state and   

    is 

165.17 J/g for PT 25 and 184.54 J/g PT 29, T is 25.44
°
C and 29.79

°
C for PCM-25 and 

PCM-29, respectively. Rate of temperature change with pressure can be calculated by 

dT/dp =  
  
   

  
   

 results in 0.022
°
C/Pa for PT 25 (dT25/dp) and 0.023

°
C/ Pa for PT 29 

(dT29/dp). As pressure increases the melting temperature would increase, this is assuming 

the PCM enthalpy and volume change are held constant. 

Absorption plays an important role in the   
     in a system; if a pore is filled more 

efficiently it will be subjected to a lower volume change from solid to liquid phase due to 

the confinement effect the pore walls impose, which will lead to a decrease in the dT/dp 

and thus decreasing the melting temperature. In addition   
    is an inherent property of 

PCM which is considered to be held constant with the bulk PCM in pores such as LWA 

where no crosslinking is occurring. 
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PT 29 is less viscous during saturation allowing for better filling of the pores. This 

reduces the volume change during solid to liquid phase change also it has a larger 

enthalpy change than that of PT 25 thus attributes to the decrease in melting temperature 

as seen in the DSC results above. 

Similarly, the Gibbs-Thomson equation (Equation 4) also states that the melting 

temperature will increase as pressure increases. When a liquid is confined in a small pore 

the surface becomes large compared to the volume and thus the contribution that 

interfacial surface free energy plays on the melting/solidification process. This is because 

an increase in the pressure inside the crystal caused by its curvature will create elevated 

melting temperatures as the crystal-wall interaction energy is lower than that of the 

liquid-wall energy [50]. 

            –           
 (       ) 

   
                                                         (4) 

Where, ΔTf is the change of the freezing or melting temperature of the confined liquid or 

solid respectively. The interfacial free energies for solid-wall and liquid wall interfaces 

are      and     respectively. Melting enthalpy is H (considered a constant bulk 

property for PCM), confining pore radius is R, and density of the solid is ρ (bulk property 

of PCM (0.85 g/ml)), temperature is T. The phase transition temperature of a solid to a 

liquid in a pore increases when the liquid-wall interfacial energy is higher than the free 

energy associated with the solid-wall interfacial energy, and vice versa [50]. This implies 

that the crystals confined in the pores are more stable than the liquid above the melting 

point associated with the bulk material being that the crystal could nucleate and grow 

from the pore walls [55].  In addition pressure effects are included because the radius of 

the confining pore is inversely proportional to pressure as discussed above. As the 
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confining radius becomes smaller the pressure will increase thus contributing to the 

increase in melting temperature. Paraffin PCMs have inactive molecule groups, -CH2, 

and –CH3, which are believed to cause no strong attractive forces between the paraffin 

and the inner surface of the porous material [42].  This affects surface effects so when 

surface amount is higher than volume the surface free energy will take precedence, and 

because paraffin is primarily inactive, typically leading to a depression in the phase 

change temperature of the paraffin in the porous medium [59]. If the pressure effects are 

not drastic enough due to reduced change in PCM volume or increase in pore radius then 

the physical effects described by Clapeyron and Gibbs-Thompson will not govern. 

After oven drying at all temperatures for 24 hours it was determined by visual inspection 

that all sand samples had a layer of PCM left on the surface as shown in Figure 5-2 

indicated by the darker color, and spotting of white wax. This surface coating could pose 

an issue of interference with hydration as well as poor bonding with the cement paste 

[60]. 

 

Figure 0-2: Picture of A) PCM saturated LWA, B) plain LWA 
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Based upon this, it is clear that the adsorption percentages determined using DSC may 

not be accurate, as it would include the PCM that remains on the surface of the sample. In 

practice, further measures would need to be taken to ensure encapsulation of the PCM 

into the LWA to avoid possible mechanical performance disadvantages associated with 

PCM being present on the surface of the fine aggregate.  Furthermore, based on the 

apparent impractically of eliminating all the PCM from the surface of the fine aggregate, 

further investigation of the saturation methods were completed with the intent of 

providing a fine coat of cement paste on the PCM-LWA composite to eliminate the 

exposure of surface PCM to the structural cement paste. 

The effective absorption of the PCM was calculated by using the ratio of the enthalpy of 

the pure PCM to the enthalpy of the impregnated aggregate. These results are tabulated in 

Table 5-1. 

Table 0-1: Phase change temperature (onset temperature for pure PCM & peak 

temperature for PCM-LWA composites), enthalpy and PCM absorption for each 

saturation method and temperatures (32
°
C/40

°
C is 32

°
C saturation temperature with a 

40
°
C oven drying temperature) 

 

 

32⁰C/40⁰C 32⁰C/60⁰C 32⁰C/40⁰C 32⁰C/60⁰C 40⁰C/75⁰C

Enthalpy 

(J/g)
165.17 22.61 24.43 35.75 30.94 11.94

Effective 

Absorbed 

(%)

100 13.69 14.79 21.64 18.73 7.23

32⁰C/40⁰C 32⁰C/60⁰C 32⁰C/40⁰C 32⁰C/60⁰C 40⁰C/75⁰C

Enthalpy 

(J/g)
184.54 14.96 23.3 31.9 32.4 29.69

Effective 

Absorbed 

(%)

100 8.11 12.63 17.29 17.56 16.09

Pure PCM Vacuum Saturation 24-hr Saturation
PT 25

PT 29
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Absorption and retention of PCM in porous materials is dependent on a variety of factors, 

such as the pore structure, temperature of the material, the liquid viscosity of the PCM, 

duration of immersion, surface area of material, liquid pressures, pre-existing moisture, 

and polarity of PCM [32]. Viscosity varies inversely with temperature; the viscosity must 

be low enough to allow absorption but high enough to prevent storage loss when the 

material is taken out of the liquid PCM or oven dried. The 24 hour saturation method iii 

(saturation at 40
°
C and oven drying at 75

°
C) had the lowest effective absorption when 

compared to the other 24 hour saturation methods; this can be attributed to the oven 

temperature being above the optimal temperature allowing for PCM to flow out of the 

pores, for this reason this method was not considered further for use in the coating 

method. 

The vacuum methods using oven drying temperatures of 40
°
C and 60

°
C had lower 

absorption percentages than their counterparts for the 24 hour saturation method only. 

The vacuum duration of 2 hours did not lead to a significant increase in the thermal 

efficiency. This indicates that the vacuum saturation at a time of 2 hours has very little 

influence on absorption. There is a combination of affects that could be causing issues 

with the effectiveness of the vacuum saturation such as (i) the hot plate heating source 

was not consistent enough to allow temperature of the PCM to remain constant 

temperature, thus allowing solidification to occur on the top layer (this was observed 

affect but could not be mitigated with consistence via a hot plate), and (ii) the 2 hour 

vacuum duration did not allow proper evacuation of air from the pores. Further 

investigation for a system that maintains the temperature in the vacuum would need to be 

done in order to improve the reliability and repeatability of the testing.  The samples had 
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the closest effective absorption to the expected value of 12% as calculated using ARIZ 

211c method on the LWA. PCM was noticed to coat the surface of these samples also 

and would need to be subjected to a cement coating that would in further reduced the 

effective absorption (as determined using the thermal efficiency through enthalpy 

results). For this reason vacuum saturation was not further taken into consideration for 

the coating method.  

A more in depth study of the 24 hour saturation was completed using three different oven 

drying temperatures (40⁰C and 60⁰C), with the saturation temperature held at 32⁰C. The 

absorption difference between PT 29 at 40⁰C and 60⁰C is 0.27%, since the difference was 

negligible it was not analyzed further for determining the best saturation method to be 

coated. The oven drying temp at 40⁰C for PT 25 had revealed a higher absorption 

capacity, which was attributed to a higher volume of surface coating of the LWA 

particles compared to those oven dried at 60⁰C. Thus, the 24 hour ambient saturation 

method with an oven drying temperature of 60⁰C was selected and used in further tests.   

The difference in effective absorption of PT 25 and PT 29 can be attributed to the 

following affects: i) because PT 29 has less viscosity it was not retained within the pores, 

ii) the latent heat of the confined PT 29 is experiencing non-freezing layers at the 

interface of the LWA matrix [34], and iii) an amount of confined PT 29 may not be 

taking part in the phase transition and thus would cause a depression in the latent heat 

[55]. 
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The second method considered for encapsulation of PCM in LWA materials was through 

the use of coatings. The methodology and sample preparation strategies were presented 

previously in Section 3.2.2. 

The efficiency of the coating process on the thermal performance of these LWA materials 

was analyzed using DSC; the results of this analysis are presented in Figure 5-3. As 

above PCM absorption was determined by comparing the enthalpy of the pure PCM to 

the enthalpy of the impregnated aggregate, these results are presented in Table 5-2. 

 

                                  
a)                                                                     b)                                      

Figure 0-3: Heating and cooling scan for a) pure PT 25, Saturated LWA, Coated LWA; 

b) pure PT 29, Saturated LWA, Coated LWA 

The amount of PCM in the LWA is the same as the saturated sand, with a cement slurry 

coating added. This coating essentially reduces the enthalpy and thus the effective 

absorption based on the parameters set. The coated sand mixes reduced in enthalpy, from 

26.72 J/g to 19.71 J/g for PT 25 and 18.90 J/g to 14.53 J/g for PT 29. This decrease in 

enthalpy is considered a decrease in effective absorption. The reduction in enthalpy can 
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be related to a number of different things: the volume of PCM is effectively reduced in 

the coated LWA material, and the surface coated with PCM is now experiencing 

confining effects the cement coating is imposing.  

It can be noted that between the saturated LWA and the coated LWA there was an 

increase in the phase transition peak temperature. The increase in phase change 

temperature is attributed to the additional surface interaction through capillary forces 

[57]. Before the coating was applied the surface of the LWA had a thin layer of PCM, 

which was not subjected to the pore pressures and because the surface interaction was 

less the interfacial surface free energy was reduced. Once the coating was added the 

interfacial surface free energy increased causing the increase in pressure and thus 

increasing the pressure during phase change transition and thus according to Clapeyron 

equation (Equation 4) increase the melting temperature. 

Table 0-2: Enthalpy and PCM absorption for saturated sand and coated sand 

 

Large batches of saturated LWA and coated saturated LWA were made using PT 25 and 

PT 29. Three samples were tested with DSC and the enthalpy results (as shown in Table 

Pure 

PCM
Saturated Sand Coated Sand

PT 25 24 hr (32⁰C/60⁰C) w/c 0.75

Enthalpy (J/g) 165.17 26.72 19.71

Effective 

Absorbed (%)
100 16.18 11.93

PT 29 24 hr (32⁰C/60⁰C) w/c 0.75

Enthalpy (J/g) 184.54 18.9 14.53

Effective 

Absorbed (%)
100 10.24 7.87
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5-2) were averaged and used to determine the percentage by volume of PCM for the 

batches that would be used in the mix design. 

All PCM percentages were accounted for in the 50% sand volume, with the paste volume 

fraction remaining constant. The amount of PCM to be added was set to 11.93% for PT 

25 and 7.87% for PT 29. For coated LWA mixes complete replacement of LWA was 

done, creating a PCM percentage by volume of 5.97% and 3.94% for PT 25, and PT 29, 

respectively. PCM volume was to be held constant for all mixes to the above percentages 

of 5.97% (PT 25) and 3.94% (PT 29) and since complete replacement of LWA with 

saturated LWA would have a larger PCM percentage, the replacement of LWA with 

saturated LWA volume was reduced to correspond with the set PCM volumes. Partial 

replacement was done at the following amounts, 38.4% PT 29 saturated LWA and 36.9% 

PT 25 saturated LWA with the remaining percentages made up of plain LWA giving the 

mortar a total LWA volume fraction of 50%. 

 

Figure 0-4: Picture of coated LWA 

Pictured in Figure 5-4 is a sample of coated sand. Through the coating process some 

individual aggregates agglomerated with adjacent particles creating a different gradation 

of LWA that could potentially influence characteristics observed in the testing results of 
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the mortars. These connected individual aggregate particles will create a new matrix that 

could affect the thermal conductivity. 

5.2 Mechanical Effects of PCM in Mortar 

Compression tests were completed at ages of 3, 14 and 28 days, for each mix. The mixes 

that were tested are as follows; OPC, PT 25 Saturated LWA, PT 25 Coated LWA, PT 25 

direct addition 5.97%, PT 29 Saturated LWA, PT 29 Coated LWA, PT 29 direct addition 

3.94%. 

All mixes with PT 25 or PT 29 showed a lower strength than the control mix. It is a well-

known fact that PCM does interact with C-S-H formation thus reducing strength [20, 24, 

33]. PCM also reduces the peak hydration temperature of the cement, controlling thermal 

stresses and cracking which would help for long term strengths, but reducing the peak 

hydration will affect the early age strength [24]. 

                              
                          a)                 b) 

Figure 0-5: Compression strengths a) PT 25 mixes, b) PT 29 mixes 

The PT 25 saturated LWA and the direct addition PT 25 (5.97%) had similar 3 day 

strengths, with an approximate 11% and 18% decrease respectively in strength compared 
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to the OPC mix. The PCM saturated LWA exhibited greater strengths than that of the 

50% coated PCM saturated LWA. This can be attributed to the plain LWA and the 

saturated LWA being mixed thoroughly. This can allow for nucleation on the unsaturated 

sand surfaces.  

 The coated sand mixes had substantially lower 3 day strength in comparison to OPC, 

with a 40% decrease. Both coated LWA mixes yielded the lowest strengths along with 

the lowest strength development over time. This effect can be attributed to three possible 

causes (i) the use of the coating effectively decreases the volume of sand and increases 

the paste volume fraction, (ii) the localized high w/c ratio paste on the interface between 

the fine aggregate and the normal paste of the concrete results in a weak interface, 

increasing the likelihood of fracture, and (iii) the slurry coating fractured or PCM has 

absorbed through thus exposing PCM into the system causing paste-aggregate interfacial 

issues [33] along with reducing the surfaces for nucleation. A combination of these 

possible causes could be the reason for the large decrease in strength. 

The direct addition of PT 25 and PT 29 displayed strength decreases due to the 

interaction of liquid PCM directly mixed with cement paste that can cause interference 

with hydration and bonding issues with the paste and aggregates [33]. Strength reduction 

is also due to the long chains of PCM wrapping around cement particles that cannot react 

to water [47] in addition to these cement particles unable to react they cannot be used as a 

nucleation point. Direct addition in mortars showed a higher strength than coated 

aggregate because the volume of PCM was small and PCM could coat sand particles or 
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cement particles thus reducing the PCM coated cement particle, while uncoated sand 

particles could be used for nucleation. 

PT 25 had a higher volume fraction than PT 29 and thus a larger decrease in strength, 

indicating that when more PCM is in the mix the more adversely it will affect it. 

5.3 Investigation of Heat Evolution of Mortars 

Isothermal calorimetry monitors the heat evolution which is related to the degree of 

hydration since because  C3S and C3A have a high exothermic release of energy at -137.6 

kJ/mol and -248.3 kJ/mol respectively, while the heat release in the formation of C-S-H is 

quite low (-20 kJ/mol) [30]. Cumulative heat release and the heat flow for each mix was 

recorded over a 24 hour period, as shown in Figure 5-6. The dissolution peaks as seen in 

the first few minutes is due to the rapid heat release that occurs when the cement minerals 

are dissolving and reacting with water to form the amorphous layer of hydration product 

around the particles, thus keeping the particles from further reacting. 

  
a) 



  72  

  
b) 

Figure 0-6: Isothermal Conductivity heat flow and cumulative heat flow for a) PT 25 

mixes, and b) PT 29 mixes 

All plotting was done versus gram of cement binder in the system, which was held 

constant for all mixes. The acceleration period is when C3S is hydrating and the rate of 

hydration is controlled by the rate of nucleation and growth of the hydration products. 

From the above graphs it is determined that the effects of PT 25 on the acceleration the 

binder system is slight with no apparent retardation occurring, though there is a 

suppression in the maximum heat flow and an extension of the deceleration period. On 

the other hand the mixes with PT 29 demonstrate larger effects on the binder in both 

acceleration and hydration. Retardation of the acceleration period is seen for the coated 

and saturated LWA mixes of approximately, ½ hour. Hydration suppression was also 

experience but at a greater extent than the mixes using PT 25. 

PT 25 coated sand mix did not experience any apparent suppression, due to the 

effectiveness of the coating on the LWA. The saturated LWA and direct addition PCM-

25 mixes experienced a greater suppression because the PCM on the surface of the 
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saturated LWA and directly added in were in direct contact with cement particles, thus 

interfering in hydration. 

PT 29 mixes are showing greater affects to the binder in the system due to the viscosity 

of PT 29, more leakage is occurring from the LWA allowing for more PCM interaction 

with the cement binder in the system. Directly incorporated PT 29 should the least 

retardation when compared to PT 25 direct addition and all other PT 29 mixes, this is 

attributed to the volume of PCM being smaller than PT 25 and PCM coating of cement 

particles is reduced by the introduced sand volume. The saturated sand mix for PT 29 had 

the greatest suppression in heat flow due to the direct contact PCM on the surface of 

LWA had with the binder of the system. 

5.4 Thermal Efficiency of Cylindrical Mortar Samples 

Thermal conductivity of the mortars was tested over a six hour period using an apparatus 

developed at Arizona State University as discussed in Section 3.3.4. Thermal 

conductivity ratio is plotted against inner radius temperature at every 1/2 hour as shown 

in Figure 5-7.   
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                                          a)                                                                        b) 

Figure 0-7: Thermal Conductivity ratio in relation to temperature for a) PT 25 mixes and 

b) PT 29 mixes 

 

Figure 0-8: Thermal Conductivity results for all mortar mixes 

There are multiple affects to thermal conductivity of a material such as mortars. Thermal 

conductivity is independent of curing age, but dependent on volume fraction of 
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aggregates, water cement ratio, admixtures, temperature and moisture conditions [61].  

Pore structure of the mortar along with the phase change temperatures of the PCM affects 

the thermal conductivity [42]. The lower thermal conductivity of paraffin PCM does not 

allow the PCM to work as efficiently as discussed in Section 2.1.1, but the higher thermal 

conductivity of LWA can allow the PCM to be efficiently utilized [62]. 

The OPC mortar had a thermal conductivity of 0.45 W/m-K which is within the range 

expected for a lightweight concrete [41]. PT 29 coated LWA had the lowest thermal 

conductivity of 0.387 W/m-K. All direct addition PT mixes had thermal conductivity 

higher than OPC mortar. 

The decrease in thermal properties of the direct addition PCM can be attributed to (i) 

PCM in direct addition is not mixed well in the mortar, and (ii) PCM is degrading in the 

cementitious system [20], thus being unproductive and (iii) changes in the aggregate 

volume could be affecting the thermal conductivity. 

The PT 29 mixes with saturated LWA and coated LWA had a drop in thermal coefficient 

between 3 to 3.5 hours and 5 hours after which the coefficient increased and then 

stabilized. Within this window is when the PCM is at its latent heat storage capacity. 

Latent heat storage allows for heat to be stored without temperature rise in the material, 

thus the T2 (outer radius temperature) would be reduced while T1 (inner radius 

temperature, initiated by the heating cartridge) is increasing. This would lead to decrease 

in thermal conductivity. The time it takes for the latent heat storage capacity to be 

reached is dependent on the conductivity of the surround material, and the heat 

absorption of the PCM, if melting is occurring layer by layer there would not be a 
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substantial effect seen at a specific time. When the PCM is at its storage capacity it 

behaves like a sensible heat storage system, such that when it absorbs heat energy it 

increases in temperature, this is why an increase in T2 is seen during the stabilized area. 

PCM incorporation is then most beneficial to offset the transfer of heat. 

5.5 FTIR Results 

FTIR testing was executed on all mortar mixes with PT 25 and PT 29. FTIR analysis was 

done to determine if chemical bonding was occurring between PCM and the hydration 

products. Pure PT 25 and PT 29 spectra depicted the same wavenumbers and so only the 

spectra from PT 29 mixes will be discussed below.  

The FTIR spectra for PT 25 and PT 29 are presented in Figure 5-9. 

     

Figure 0-9: FTIR Spectrum for PT 25 & PT 29  

All peaks appear below 3000 cm
-1

, meaning PT25 and PT 29 are saturated hydrocarbons 

[42]. There are three peaks at the wave numbers of approximately 2953 cm
-1

, 2915 cm
-1

, 
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and 2847 cm
-1

 corresponding to the asymmetrical vibration of the –CH3 functional group, 

-CH2 functional group and the symmetrical vibration of the –CH2 functional group, 

respectively.  The wavenumber around 1730 cm
-1

 is the stretching vibration of the carbon 

double bonded with oxygen. The peaks in the range at 1462 cm
-1

 for PT and 1467 cm
-1

 

for Micronal correspond to the –CH2 and –CH3 deformation vibration. The single bond 

carbon – oxygen stretching vibration appear around the range of 1160 cm
-1

. CH2 rocking 

absorption band is represented by a wavenumber of 720 cm
-1

. The –CH2 peaks are more 

intense than the first peak representing –CH3, signifying that there are more -CH2 

molecules than –CH3. The FTIR spectrum for PT reveals that it has the same bonding 

present in paraffin. 

  
Figure 0-10: FTIR Spectra from Stalite LWA  

 

The FTIR spectra for Stalite LWA indicated three distinctive peaks at 1472 cm
-1

, 1001 

cm
-1

 for Si-O and Al-O stretching, and 776 cm
-1

. 

The spectra for the OPC mortar  at 14 days is shown in Figure 3-10 below, the peaks 

corresponding to calcium hydroxide at 3634 cm
-1

 and the sulfate products at 1650 cm
-1

. 

O-H stretching is at 3414 cm
-1

, carbonates at 1412 cm
-1

, and the stretching bands for Si-O 

and Al-O at 969 cm
-1

. 
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Figure 0-11: FTIR spectrum for PT 29 mixes at 14 days 

Shifts in the Si-O-Si band can be attributed to the physical interactions between the 

confined PCM and the LWA matrix [63]. All high transmittance wavenumbers associated 

with PCM are still present implying chemical structure is remaining mostly unchanged. 

The wave numbers for CH, O-H stretching and carbonates, shifts higher when PCM is 

incorporated into the mortar. The wavenumbers corresponding to PCM that can be seen 

are shifted to a higher number in the mortar mix than that of the pure PCM. This shows 

that there is some change in the linear chain of PT 29 such that it is cross linking with 
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silica in the system. This cross linking is clearly physical in nature because no major new 

peaks are in the spectra indicating that there is no chemical reaction occurring [63, 64, 

56]. 

A comparison of curing age on OPC mix and PT 29 coated sand mix for 14 and 28 days 

is presented in Figure 5-12. 
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Figure 0-12: FTIR Spectrum OPC and PT 29 Coated Sand at 14 and 28 days 

The shift that is seen to a higher wavenumber from 14 day OPC to 18 day OPC is 

interpreted as an increase in the silica polymerization in the gel [65]. The increased silica 

content can then contribute to the interaction of the paraffin with the matrix. The major 

peaks signifying PCM in the coated LWA mix are still present at 28 days and remain 

unchanged from 14 days. This would imply that the coated sand mix is effectively 

keeping the PCM from changing chemical bonds with age. 

5.6 Summary 

Incorporation of PCM in LWA to be utilized in mortars was studied in order to better 

understand the effects of PCM in concrete systems and to analyze the encapsulation 

capability of PCM in LWA. The straining system should be improved to reduce PCM left 

on the surface. Encapsulation in LWA did not resolve the issue of strength reduction with 

PCM incorporation. Furthermore, using a cement slurry coating actually reduced the 

strength, an effect that is attributed primarily to strength at aggregate-binder interfaces 

due to the high water/cement ratio of the coating. Utilizing a mixture of plain LWA and 

saturated LWA appears to diminish some of the strength reduction effects; however it 

will also reduce the thermal efficiency of the material. Isothermal calorimetry results 

confirmed that the interference with C3S and C3A is very minimal but still a reduction in 

hydration rate was seen.  These results also illustrated that while the PT is introduced into 

the LWA volume it can still directly interfere with hydration process via chemical means 

and through the thermal nature of the PCM. Thermal conductivity showed that mixes 

using PCM in LWA proved to be more thermally efficient while mixes with PCM 

directly added were less efficient, a result that is attributed primarily to interaction 
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between the PCM and paste. FTIR spectra illustrated that the PCM and the mortar were 

not interacting chemically to form new compounds, but shifts in the wavenumbers 

corresponding to PT and cement hydration indicates physical interactions. Silica 

polymerization over time occurs as indicated by the increase in wavenumbers, indicating 

C-S-H formation is continuing at later ages. LWA is a potential encapsulation method for 

PCM in concrete systems, further work needs to be done to improve techniques, reducing 

PCM leakage, and further understanding chemical affects PCM has on cement. 
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CONCLUSIONS 

 

The purpose of this research was to investigate the influence phase change materials 

make in cementious systems. Mechanical, physical and thermal properties were analyzed 

as was the thermal performance of the PCM in the system. The first set of experiments 

were one to look at incorporation of bulk PCM into  lightweight aggregate which would 

then be used in the mortar mixes. Compressive strengths, heat of hydration and thermal 

conductivity were tested of the mortars. The goal was to see if and how containment in 

the LWA was affecting PCM interaction with the cement. The second set of experiments 

were to analyze the effects of PCM directly incorporated with OPC pastes. The 

compressive strengths, pore structure, heat of hydration, hydration product formation, 

thermal characteristics, and interaction with pore solution were studied to better 

understand how the PCM interacts with the OPC directly. 

6.1 Conclusions for PCM interaction with cement paste 

 Mixing must be done using certain water:cement ratios along with certain 

additional volumes of PCM, such that the mix can remain homogenous. Mixes 

with w/c 0.7 and PCM volume 30% or greater were not accomplished due to large 

liquid to powder ratio. 

 The pore structure of the paste was changed with PCM incorporation such that 

intruded volume of Hg was increased and threshold pore sizes were larger for 

larger percentages of PCM. 

 Heat of hydration is affected substantially from the PCM in the paste, retardation 

and suppression in the hydration peaks were occurring. 
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 Thermal degradation of PT in the pastes due to crosslinking with silica hydrates 

leading to enthalpy relaxation 

 Physical interaction of PT in pores and synthetic pore solution causes inefficient 

melting of the PCM in the pore. 

6.2 Conclusion on encapsulated PCM in LWA for mortar mixes 

 Encapsulation through a cement slurry coating caused lower strengths. 

 Compressive strengths continue to be effected adversely even with PCM 

encapsulate into LWA, though mixes with partial saturated sand and plain sand 

seemed to fair more well. 

 Heat of hydration is not as widely affected when PCM is encapsulated into LWA. 

 Thermal Conductivity of the mortar mixes is improved with PCM in LWA then 

added in addition. 

 FTIR spectra showed that there is a slight shift seen in the wavenumbers for PCM 

and the mortar with time, this is due to the higher formation of Silica in the 

system.  

6.3 Recommendations for Further Work 

Results from these experiments in this study show that thermal enhancement is possible 

through incorporation of phase change materials into lightweight aggregate or other 

encapsulation methods, while direct mixing application of bulk PCM causes large 

thermal reductions to occur, thus the thermal efficiency is diminished. Mechanical 

properties of cementious system were adversely affected in both cases of encapsulation 

and direct addition. There is an interesting phenomenon that occurred as seen in the study 
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of the interaction PCM had with the pore solution in the system that inadvertently 

changed some inherent properties of the PCM. 

Further research is suggested as follows: 

 Development of better batching techniques for saturating and coating LWA thus 

to reduce the time involved in making enough material and increasing the 

homogeneity of the saturation process. 

 Scanning electron microscopy analysis of mortar mixes with and without the use 

of the cement slurry coating would help shed more light on the physical picture of 

strength loss seen in the coated sand mixes. 

 Further chemical analysis on PCM interaction with cement paste products needs 

to better understand the effect of cross linking between cement particles and 

paraffin that is causing enthalpy relaxation. 

 The interaction of PCM with pore solution needs to be further analyzed in order to 

see if crosslinking is forming with the Ca(OH)2 in the pore solution and if that is 

causing a precipitate to form. 

 Developing numerical modeling of heat transfer and efficiency of building 

systems using PCM incorporated into LWA. 
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