
Tile-based Methods for Online Choropleth Mapping: A Scalability Evaluation

by

Myung-Hwa Hwang

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Approved September 2013 by the
Graduate Supervisory Committee:

Luc Anselin, Chair
Sergio J. Rey

Elizabeth A. Wentz

ARIZONA STATE UNIVERSITY

December 2013

ABSTRACT

Choropleth maps are a common form of online cartographic visualization. They

reveal patterns in spatial distributions of a variable by associating colors with data values

measured at areal units. Although this capability of pattern revelation has popularized the

use of choropleth maps, existing methods for their online delivery are limited in supporting

dynamic map generation from large areal data. This limitation has become increasingly

problematic in online choropleth mapping as access to small area statistics, such as high-

resolution census data and real-time aggregates of geospatial data streams, has never been

easier due to advances in geospatial web technologies. The current literature shows that

the challenge of large areal data can be mitigated through tiled maps where pre-processed

map data are hierarchically partitioned into tiny rectangular images or map chunks for ef-

ficient data transmission. Various approaches have emerged lately to enable this tile-based

choropleth mapping, yet little empirical evidence exists on their ability to handle spatial

data with large numbers of areal units, thus complicating technical decision making in the

development of online choropleth mapping applications. To fill this knowledge gap, this

dissertation study conducts a scalability evaluation of three tile-based methods discussed

in the literature: raster, scalable vector graphics (SVG), and HTML5 Canvas. For the eval-

uation, the study develops two test applications, generates map tiles from five different

boundaries of the United States, and measures the response times of the applications under

multiple test operations. While specific to the experimental setups of the study, the evalua-

tion results show that the raster method scales better across various types of user interaction

than the other methods. Empirical evidence also points to the superior scalability of Canvas

to SVG in dynamic rendering of vector tiles, but not necessarily for partial updates of the

tiles. These findings indicate that the raster method is better suited for dynamic choropleth

rendering from large areal data, while Canvas would be more suitable than SVG when such

rendering frequently involves complete updates of vector shapes.

i

ACKNOWLEDGEMENTS

This dissertation would have been impossible without the support of many peo-

ple. First of all, I would like to thank my advisor, Luc Anselin. He has taught research

fundamentals, has encouraged me to explore new fields, and has helped me find and stay

on the right path. Without the incessant opportunities he has given, I would not be able

to reach this far along my doctoral study. The members of my committee, Sergio J. Rey

and Elizabeth A. Wentz provided valuable information and comments that helped improve

the design and quality of this research. Dr. Rey, together with Dr. Anselin, allowed me

to develop my professional expertise in spatial analysis and programming. Thanks to Dr.

Wentz, I could enhance my perspectives to the process of scientific research and publica-

tions. Ming-Hsiang Tsou at San Diego State University and Shaowen Wang at University

of Illinos at Urbana-Champaign (UIUC) have also shared great insights into the fields of

Internet and Cyber GIS.

I also would like to thank the Graduate College and the Graduate and Professional

Student Association at Arizona State University (ASU) for the fund and grant provided

by a Dissertation Completion Fellowship and Graduate Research Support Program. These

financial supports were essential for writing this dissertation and completing some parts of

my study.

Julia Koschinsky, David C. Folch, Charles R. Schmidt, and Yan Liu deserve my

special thanks. Julia has helped me in many different ways along these years. She was

an insightful co-worker, a knowledgeable tutor, and sometimes my sister and mom in the

United States (US). David has shared many of my joys and concerns that arose from my

research and life in Arizona. Charles, a born programmer, has always been my first resort

for troubleshooting multiple technical and programming problems. Yan Liu has provided

a lot of guidance in seeing through the dark and bright sides of my life and research.

ii

My sincere appreciation is in order to other graduate students and scholars I met

at UIUC and ASU. Jong-Gun, Na-Young, Won-Kyung, and Min-Jo, you washed away my

loneliness when I was homesick and in depression. Melinda and Stephanie, thank you for

sharing the burden of my doctoral dissertation. Jae-Won, I appreciate your patience of

hearing me out when I talked about nonsense out of despair. All hard workers at GeoDa

Center of ASU and CyberInfrastructure and Geospatial Information Laboratory (CIGI) of

UIUC, your passion have been very contagious. And I could learn how to pursue new

things, ideas, and perspectives through diverse forms of collaboration with you guys.

Finally, I want to express my heartfelt gratitude to my family and friends in and

from Korea. To my father, when I wanted to give up things you were always beside me. I

could hear your conforting and encouraging voice. To my mother, you raised me to pursue

dreams. I lived one and will continue to do so. To my sisters and brothers, without my

belief in you, I neither could live away from you and mom nor cloud go through my life in

US. To Enki, thanks for reaching out to me in difficult times. From you, I’ve learned how to

live and think of our life. To Jung-Phil and Hae-Young, even an one-minute chat with you

cheered me up completely. Your care and affection have been and will be indispensable to

continuing my life journey.

iii

TABLE OF CONTENTS

Page

TABLE OF CONTENTS . iv

LIST OF TABLES . vii

LIST OF FIGURES . viii

LIST OF ACRONYMS and ABBREVIATIONS . ix

CHAPTER . 1

1 INTRODUCTION . 1

1.1 Online Choropleth Mapping and the Challenge of Large Areal Data 1

1.2 Tile-based Choropleth Mapping and the Need for Scalability Evaluation . . 3

1.3 Research Overview and Significance . 5

2 LITERATURE REVIEW . 7

2.1 Choropleth Mapping . 7

2.1.1 Data Classification . 8

2.1.2 Color and Legend Design . 11

2.2 Online Mapping . 14

2.2.1 Architectural Concerns: Server-side and Client-side Mapping 14

2.2.2 Map Data Models: Raster and Vector Mapping 17

2.2.3 GIServices and Web 2.0 . 21

2.2.3.1 GIServices . 21

2.2.3.2 Web 2.0 and User-centered Geospatial Technologies . . . 25

2.2.4 Tile Mapping . 30

2.2.5 Summary . 36

2.3 Online Choropleth Mapping . 36

2.3.1 Traditional Approaches . 37

2.3.2 Tile-based Approaches . 39

2.4 Summary . 43

iv

Chapter Page

3 METHOD . 45

3.1 Test Applications . 45

3.2 Test Data . 50

3.3 Tile Generation . 51

3.3.1 Data Pre-processing . 51

3.3.2 Common Configurations for Map Tiling 51

3.3.3 Raster Tiling . 52

3.3.4 Vector Tiling . 52

3.3.5 Comparability of Raster and Vector Tiles 56

3.4 Evaluation Framework . 56

3.4.1 Test Operations . 56

3.4.2 Metric . 61

3.4.3 Test Environment . 64

4 RESULTS . 65

4.1 Dynamic Choropleth Mapping . 65

4.2 Map Juxtaposition . 68

4.3 Dynamic Data Query . 70

4.4 Zoom in . 71

4.5 Pan . 73

4.6 Summary . 74

5 DISCUSSION . 76

6 CONCLUSION . 82

REFERENCES . 86

APPENDICES . 98

A SOURCE CODE FOR TEST APPLICATIONS 98

A.1 Common Components . 99

v

Chapter Page

A.1.1 Base web page . 99

A.1.2 Map Classifier . 100

A.2 Components for raster-based test application 103

A.2.1 Test tool . 103

A.2.2 Map component . 114

A.2.3 Event handling . 123

A.3 Components for vector-based test application 124

A.3.1 Test tool . 124

A.3.2 Map component . 134

A.3.3 Event handling component . 142

B DETERMINATION OF SIMPLIFICATION TOLERANCE 144

vi

LIST OF TABLES

Table Page

3.1 The number and data size of raster tiles . 52

3.2 The number and data size of vector tiles . 55

4.1 Average response times during dynamic choropleth mapping 65

4.2 Details of time spent on dynamic choropleth mapping 67

4.3 Average response times during map juxtaposition 69

4.4 Average response times during dynamic data query 71

4.5 Details of time spent on dynamic data query 72

4.6 Average response times during zoom-in operation 73

4.7 Average response times during pan operation 75

vii

LIST OF FIGURES

Figure Page

2.1 Illustration of raster and vector tiling . 33

2.2 Different approaches to tile-based choropleth mapping 41

3.1 Snapshots of test applications . 47

3.2 Architectures of test applications . 49

3.3 The process of vector tile generation . 54

3.4 Workflows for dynamic choropleth mapping in test applications 57

3.5 Workflows for dynamic data query in test applications 59

4.1 Response time chart of test applications (dynamic choropleth mapping) 66

4.2 Response time chart of test applications (map juxtaposition) 70

4.3 Response time chart of test applications (dynamic data query) 72

4.4 Response time chart of test applications (zoom in) 74

4.5 Response time chart of test applications (pan) 75

viii

LIST OF ACRONYMS and ABBREVIATIONS

AJAX Asynchronous Javascript And XML

API Application Programming Interface

DynTM Dynamic Tile Mapper

ESDA Exploratory Spatial Data Analysis

ESRI Environmental Systems Research Institute

FHL Frequency Histogram Legend

GeoJSON Geographic JavaScript Object Notation

GeoRSS Geographic Really Simple Syndication

GIF Graphics Interchange Format

GIS Geographic Information Systems

GIScience Geographic Information Science

GIServices Geographic Information Services

GML Geography Markup Language

GPS Global Positioning Systems

HTML HyperText Markup Language

JPEG Joint Photographic Experts Group

KML Keyhole Markup Language

LOD Level Of Detail

NASA National Aeronautics and Space Administration

OGC Open Geospatial Consortium

PARC Palo Alto Research Center

PCSA Primary Care Service Area

PNG Portable Network Graphic

PySAL Python Spatial Analysis Library

REST REpresentational State Transfer

RSS Really Simple Syndication
ix

SE Symbology Encoding

SLD Styled Layer Description

SOAP Simple Object Access Protocol

SVG Scalable Vector Graphics

TIFF Tagged Image File Format

U.S. United States

VGI Volunteered Geographic Information

VML Vector Markup Language

W3C World Wide Web Consortium

WCS Web Coverage Service

WebGL Web Graphics Library

WFS Web Feature Service

WMS Web Map Service

WMTS Web Map Tile Service

XML Extensible Markup Language

ZCTA Zip Code Tabulation Area

x

CHAPTER 1

INTRODUCTION

1.1 Online Choropleth Mapping and the Challenge of Large Areal Data

The recent decade has witnessed dramatic changes in the production, provision, and use of

online maps. Advances in information technologies, such as global positioning systems

(GPS) and web 2.0 technologies, have allowed even casual users to partake in spatial data

collection (Goodchild, 2007) and produce maps with a few mouse clicks (Plewe, 2007;

Tsou, 2011). Maps from disparate providers can be easily shared through standardized

web interfaces and mashed up to new value-added applications (Haklay et al., 2008; Batty

et al., 2010). The primary use of online maps does not differ from that of paper maps, i.e.,

the communication of messages based on geographic information. However, many novel

or renewed approaches to map use have also appeared on the web. For example, people

use online maps to build social networks based on their current locations (Zheng et al.,

2010). Online maps also have been utilized to disseminate georeferenced statistical

information through web sites and mass media. Interactive analytical methods and

advanced visualization techniques have been increasingly added to these statistical maps

(Andrienko et al., 2010).

The progress in the analytical capabilities of online statistical maps is to a

substantial degree the result of many research efforts in geographic information science

(GIScience). For example, early studies such as those by Dykes (1998), Andrienko et al.

(1999), Takatsuka and Gahegan (2001), and Anselin et al. (2004) enabled a wider range of

users to easily access interactive tools over the Internet for exploratory spatial data

analysis (ESDA) and geovisualization. More recently, researchers have incorporated these

types of analytical tools into electronic atlases to improve the spatial exploration of

statistical data that governments and public institutions share online (Tsoulos, 2005;

1

MacEachren et al., 2008; Rinner et al., 2011). User-centered design approaches in

GIScience have also contributed to understanding how users work with interactive

analytical tools available with online statistical maps (Cinnamon et al., 2009) and how the

usability of such tools could be enhanced through changes in user interface and map

design (MacEachren et al., 2008).

Among the many analytical methods discussed in the GIScience literature,

choropleth mapping is arguably the most widely used technique for online statistical

mapping (Armstrong et al., 2003). A choropleth map associates a color code with each

geographic observation according to its attribute value. While “classless” methods for

choropleth mapping directly map an attribute value to a color code (Tobler, 1973), most

other approaches classify observations into several groups by considering the distribution

of their attribute values (Slocum et al., 2009). This combination of data grouping and

color shading, despite the need for careful decision making on these parameters (Brewer

and Pickle, 2002), facilitates the identification of patterns in geographic variations of the

mapped variable (Cromley and Cromley, 1996). In addition, most statistical data collected

by governments and public institutions are aggregated by predefined enumeration units,

making them amenable to choropleth mapping (Armstrong et al., 2003). Many online

statistical mapping applications provide the capability of choropleth mapping. In

particular, the recent generation of these applications supports dynamic choropleth

mapping where output maps are not pre-generated, but are created on the fly as users

interactively change design parameters related to data classification and color shading

(Anselin et al., 2004; MacEachren et al., 2008; Jern, 2009).

Despite the continued growth of online applications that can support dynamic

choropleth mapping, the applications today are limited in that they cannot deal with large

areal data containing more than several thousand areal units (Zhao and Shneiderman,

2005; Schmidt and Dev, 2008). In general, it is difficult to dynamically create and display

interactive geographic visuals from large spatial data (Gahegan, 1999). This is because the
2

time for processing and rendering data increases with the number of spatial objects

included in the data (Guo et al., 2006). The challenge posed by large spatial data

intensifies on the web, particularly because dynamic generation of geographic visuals and

user interaction involve data transmission over the Internet (Rohrer and Swing, 1997).

Despite this difficulty, there has been a growing demand for enabling dynamic choropleth

mapping with large areal data (Gibin et al., 2008): high-resolution areal data, such as

fine-grained census and cadastral databases, have become increasingly accessible and

available for spatial analysis, at least in developed countries (Kwakkel et al., 2012); spatial

problem-solving engines often produce analytical results measured at a type of areal unit;

and real-time data from GPS and geospatial sensors are frequently aggregated into various

forms of areal units for visual sense making of the data. To better address this demand,

our understanding needs to be improved of existing approaches to online mapping of large

spatial data and their applications to choropleth mapping.

1.2 Tile-based Choropleth Mapping and the Need for Scalability Evaluation

The first generation of online mapping applications, such as Yahoo! Maps and MapQuest,

appeared in the mid 1990s and completely altered how spatial data were shared with the

general public (Peng and Tsou, 2003). Despite the novelty, these applications were

considered rudimentary due to their slow performance and limited support for user

interaction (Sample and Ioup, 2010). In 2005, Google Maps employed tile-based mapping

to overcome these drawbacks of online mapping applications. It provided “slippy map” by

dividing pre-rendered maps into tiny tiled images, caching them on the server-side

storage, and delivering them only if they became visible within the current map view

(Quinn and Gahegan, 2010). Because this map tiling substantially reduces the amount of

map data to be downloaded at a time, “slippy map” has improved user experience with

map navigation (Haklay et al., 2008) and has gained popularity as a solution for efficient

online delivery of large spatial data (Peterson, 2012b).

3

The latest literature on tile-based mapping suggests that map tiling can be used not

only for fast delivery of static map images, but also for dynamic yet rapid creation of

online choropleth maps from large areal data (Gibin et al., 2008; Mateos and O’Brien,

2011). While the general map-tiling approach is still applicable to online choropleth

mapping, it is inappropriate for dynamic choropleth mapping since on-demand changes in

map design parameters (e.g., data classification and color scheme) would yield large

collections of output maps, even from one data variable (Armstrong et al., 2003).

Recently, raster- and vector-based variants of the tile-based mapping method have been

discussed in the literature to enable dynamic choropleth mapping of large areal data. In

the raster-based approach proposed by Schmidt and Dev (2008), raster tiles are created

after assigning unique color codes to individual areal units. New choropleth maps are then

generated on the fly by changing the color codes assigned to the pixels of each tile. In

contrast, in the vector-based approach geometric data are pre-processed to build vector

tiles of varying levels of detail (Antoniou et al., 2009). Then advanced web graphics

technologies such as Scalable Vector Graphics (SVG)1 and HTML5 Canvas2 are utilized

for client-side rendering of the vector tiles (Gaffuri, 2012).

While these tile-based approaches seem to be promising solutions for addressing

the data challenge in online choropleth mapping, one key question remains unanswered:

To what extent can they handle large areal data when supporting the dynamic rendering of

and user interaction with online choropleth maps? Answering this question is important

in order to help researchers in GIScience select an appropriate tile-mapping method that

matches the data requirements for their choropleth mapping applications. The wide use of

choropleth maps in electronic atlases also suggests that answers to this question would

1SVG (Scalable Vector Graphics) is a language for describing 2D vector graphics that need to be dis-
played on web browsers (Neumann and Winter, 2005). It is based on extensible markup language (XML).

2“HTML5 is being developed as the next major revision of HTML (Hypertext markup language)” (Bou-
los et al., 2010, p.1). Canvas is a component of HTML5 that is key in the dynamic rendering of 2D vector
shapes and bitmap images on web browsers (Boulos et al., 2010).

4

improve the effectiveness of choropleth mapping in these atlases, especially when they are

used to visualize global spatial distributions of statistics measured at small areal units.

1.3 Research Overview and Significance

The purpose of this dissertation study is to empirically evaluate the scalability of three

existing approaches to tile-based choropleth mapping: raster, SVG, and Canvas. Adopting

the concept of visual scalability formulated by Eick and Karr (2002), the study defines

scalability as the capability of tile-mapping methods to effectively render and interact with

large areal data sets in terms of the number of areal units. For the evaluation, the study

employs two test applications: one for the raster approach and another for the SVG and

Canvas approaches. These test applications support an identical set of user interaction for

choropleth mapping but utilize different map-rendering methods. Specific types of user

interaction that are tested in the evaluation include dynamic choropleth map generation,

map juxtaposition, dynamic data query, and map navigation. The study compares the

scalability of the three tile-mapping approaches by measuring the time that the test

applications took to update and render maps.

The evaluation in this study contributes to the literature of GIScience and

cartography by providing empirical evidence for the scalability of the raster, SVG, and

Canvas approaches in supporting dynamic, interactive choropleth mapping. To the best of

this author’s knowledge, the scalability of different tile-based choropleth-mapping

approaches has not been benchmarked through empirical experiments. While specific to

the test setups in the study, the results from the experiments demonstrate that the raster

approach scales better than the other approaches and that HTML5 Canvas is more efficient

than SVG for dynamic choropleth rendering of complete map tiles, but not necessarily for

interactive updates of a subset of areal units. These findings suggest that although the

tile-based approaches indeed facilitate dynamic choropleth mapping from large areal data,

their scalability varies to a substantial extent. Empirical knowledge like this would allow

map providers to make informed decisions on technological aspects of their mapping
5

applications. It also would help researchers in online mapping and geovisualization

develop a clear understanding of the potential of different web graphics technologies.

The remainder of this dissertation is organized as follows: Chapter 2 provides a

review of literature that concerns the concept and methods of choropleth mapping, the

evolution of online mapping technologies, and traditional and tile-based approaches to

online choropleth mapping. Chapter 3 presents the methodology used for the study. In

particular, it elaborates on the implementation of test applications, the characteristics of

test data, the process of tile generation, and the framework for the evaluation. Chapter 4

reports the results of the evaluation. Chapter 5 discusses the implications of the results for

the research of online choropleth mapping in particular and web-based cartographic

visualization in general. Chapter 6 presents conclusions, future research directions, and

the significance of the study.

6

CHAPTER 2

LITERATURE REVIEW

The goal of the literature review is two-fold. First, it aims at providing a theoretical

background related to tile-based choropleth mapping so as to place this dissertation study

in the larger research context of choropleth mapping and online mapping. The first section

thus provides an overview of how choropleth maps are designed. The review then moves

on to elaborating the developments in online mapping. Because the evaluation of the study

focuses on different structures and technologies for online choropleth-mapping

applications, the second section discusses various issues concerning the design and

implementation of online mapping applications such as architecture, map data models,

geographic information services (GIServices), web 2.0 technologies, and map tiling. The

second goal of the review is to identify research gaps in the literature of online choropleth

mapping. To this end, the third section of the review examines connections between

choropleth mapping and online mapping. It starts with conventional approaches to online

choropleth mapping and contrasts them with emerging studies that apply map tiling to

choropleth mapping.

2.1 Choropleth Mapping

Choropleth mapping is “a method of cartographic representation which employs

distinctive color or shading applied to other than those bounded by isolines” (International

Cartographic Association, Commission II, 1973, p.123). These are usually enumeration

units at which the data are aggregated or computed. Examples include statistical or

administrative areas, such as counties, states, census tracts, and block groups. In

choropleth maps, the color value for an individual enumeration unit is associated with the

magnitude of its data value that is considered to occur in the enumeration unit “typically”

rather than “uniformly” (Slocum et al., 2009). The resulting cartographic representation

7

easily reveals visual patterns in the spatial distribution of the data values as a histogram

provides a visual summary of a data distribution in one-dimensional space (Dent et al.,

2009). This power of choropleth maps in pattern revelation is the main reason for their

current popularity, along with the increasing accessibility of social and economic statistics

aggregated by predefined jurisdictions (Armstrong et al., 2003). Advances in computer

and web cartography have also contributed to the proliferation of choropleth maps by

providing a wide range of users with easy access to map-making capabilities (Plewe,

2007).

2.1.1 Data Classification

Unarguably, one of the most critical concerns in choropleth map design is data

classification. It involves the grouping of raw data values into classes where each is

represented by a unique cartographic symbol. Since human perception is limited, this

reduction of data variation and the consequent visual generalization tend to facilitate

human perception of the spatial patterns displayed in choropleth maps (Dent et al., 2009).

The use of data classification, however, has been criticized, as it causes some loss in data

accuracy and burdens the map designer with the task of deciding appropriate methods and

parameters for the data grouping (Slocum et al., 2009). As such, multiple studies have

been conducted to answer the questions of whether data need to be classified, and if so,

when and how the classification should be done. This subsection provides a brief review

of those studies so as to explicate the rationale behind the rise of software applications

capable of dynamic choropleth mapping.

When the first choropleth map was released in 1826, it was classless (Robinson,

1982). However, choropleth maps soon utilized data classification to enhance map

readability. A scientific argument against the use of classed choropleth maps was initiated

in 1973 by Tobler. He argued “It is now technologically feasible to produce virtually

continuous shades of grey by using automatic map drawing equipment. It is therefore no

8

longer necessary for the cartographer to “quantize” data by combining values into class

intervals” (p.262). Heated debates have been raised since then. As well reviewed by

Slocum et al. (2009) and Stewart and Kennelly (2010), the debates centered on whether or

not data classification facilitated information retrieval and pattern identification from

choropleth maps (Muller, 1979, 1980) as well as the memorization of the resultant

information and patterns (Dobson, 1980). Despite the debates, their findings are mixed

and incomparable since existing studies did not account for or controlled differently

confounding factors such as map-reading time (Gilmartin and Shelton, 1989) and the

number of classes (MacEachren, 1982; Mersey, 1990). In view of these inconclusive

findings from prior research, the issue of importance is not whether unclassed choropleth

maps are better than classed ones, but under what conditions one may surpass the other,

and when they may be used interchangeably. For instance, Cromley (2005) indicated the

accuracy of a classed choropleth map could be improved by taking its unclassed design

into account. Similarly but in the context of data exploration, Slocum et al. (2009) pointed

out that combined applications of data grouping and ungrouping could facilitate

exploration of data patterns, while classed choropleth maps would still work better for

static delivery of geographic information.

Classed choropleth maps are widely used, despite the challenges from unclassed

maps. Methods for data classification, therefore, have continued to draw attention in

cartographic research. A theme of particular significance in this research concerns

developing classification methods that can capture the statistical characteristics and spatial

configurations of data values as accurately as possible (Armstrong et al., 2003). While

conventional methods for data classification, such as equal interval and quantiles, are easy

to compute and facilitate map interpretation and comparison (Brewer and Pickle, 2002),

they often fail to maintain the numerical (e.g., grouping in data in the number line) and

spatial structures (e.g., contiguity) in the data values (Slocum et al., 2009). Researchers in

cartography have sought to address this problem by maximizing numerical homogeneity

9

and spatial contiguity of data observations within each class while also maximizing

differences between classes both in the number line and spatial boundaries (Traun and

Loidi, 2012).

Jenks and Caspall (1971) were the first to provide a comprehensive theoretical

foundation on which data classification could be seen as optimization problems. The goal

of optimization was to minimize intra-class variations in data values (i.e., tabular error),

area-weighted data values (i.e., overview error), and differences in the data values of

neighboring units (i.e., boundary error). This theoretical discussion was implemented by

Jenks (1977) after Fisher (1958) had laid the mathematical foundation necessary to find

optimal solutions. This implementation, however, did not consider the boundary error,

thereby leaving the spatial contiguity goal unachieved. Multiple researchers in

cartographic studies soon made explicit considerations of the unachieved goal of spatial

contiguity in data classification. For example, Monmonier (1972) and Murray and Shyy

(2000) used both numerical and spatial distances among data observations to find an

optimal set of class intervals. Cromley and Cromley (1996) created virtual network graphs

from data observations and used a shortest path approach to apply spatial contiguity

constraints to data classification. Armstrong et al. (2003) generalized data classification as

a multicriteria decision-making problem, while introducing new optimization goals such

as area equivalency between classes and improved spatial association within each class.

The existing approaches to optimization-based classification are exploratory in the

sense that the map designer still needs to experiment with classification parameters such as

the number of classes and weightings for various optimization criteria. Their application

might therefore seem complicated, especially when guidelines for design experiments and

decisions are unavailable. Recently, Traun and Loidi (2012) pointed out the lack of clear

guidance for determining weights for spatial constraints in data classification. The authors

argued that global spatial autocorrelation in the observed data could be used for creating

regions of similar data values, thus removing the need for user-chosen weighting for
10

optimization criteria. In a similar context but without taking an optimization approach,

Jiang (2012) provided a method that recursively applied binary grouping to high values in

the long tail of the data distribution until the sizes of the resulting two groups became

balanced. This method was designed to spatially exhibit any hierarchical structure in the

data values that followed a Zipf’s-law-like rank-size distribution. Since the data grouping

ended when the balanced group size was achieved, the method ostensibly showed breaks

in the data values naturally without necessitating a selection of the number of classes.

Overall, the review thus far shows the variety of data classification approaches

used for choropleth mapping. This variety indicates that choropleth mapping is by nature

an exploratory rather than a deterministic process (Brewer and Pickle, 2002; Armstrong

et al., 2003). That is, designing a choropleth map requires multidimensional exploration

of the statistical characteristics and spatial context of data values. It also requires a careful

comparison of how different classification solutions would affect the resulting map. The

increase of software applications capable of dynamic choropleth mapping may be

attributable partly to the growing recognition of choropleth map design as an exploratory

activity. Additional grounds for this view can be found in prior studies related to the visual

design of choropleth maps. The approaches and findings of these studies are discussed

below.

2.1.2 Color and Legend Design

The visual design of choropleth maps are concerned with the specification of colors and

legends. Colors are a means for the map reader to perceive variations in data values over

space, and legends are the information source defining the mapping between numerical

and chromatic spaces. The importance of color design in choropleth mapping has long

been recognized, but the relevant theoretical principles and practical guidelines have

resulted mostly from the research done by Brewer and her colleagues. Guidelines for

legend design have been compiled as a part of guidance for general map design (Slocum

11

et al., 2009). Research in choropleth mapping has focused on designing legends that can

inform the statistical aspects of the data values.

Research on color use in choropleth mapping has sought to develop and validate

systematic frameworks for color selection with consideration to a wide range of map

readers and uses. Emphasizing the importance of “matching the organization of the

perceptual dimensions of color (hue, lightness, saturation) to the organization of data

being represented” (p.55), Brewer (1999) provided a typology of color schemes that

account for data characteristics. This typology consists of sequential, diverging, and

spectral color schemes that are suitable for unipolar and ordered data, bipolar data, and

scientific visualization, respectively. Brewer (1996, 1997) and Brewer et al. (1997) also

developed color sets for these schemes and evaluated the effectiveness of and user

preference for different sets of color schemes through controlled experiments. In these

studies, it was highlighted that specific color schemes should be designed in such a way

that they could accommodate map readers with color-vision impairments as much as

possible (Olson and Brewer, 1997). The results from these theoretical and empirical

studies produced a well-designed software tool, namely ColorBrewer, to guide novice

map designers in color selection (Brewer et al., 2003; Harrower and Brewer, 2003). While

not as actively as in the late 1990s, color theories and guidelines have been further

developed from the work of Brewer and her colleagues. For instance, Mennis (2006)

applied diverging color schemes to improve the visualization accuracy of various outputs

from geographically weighted regression. Jenny and Kelso (2007) developed a general

typology of common forms of color vision impairment and provided practical tips for

color selection in map design.

Legends are the key to reading choropleth maps since they show the relationships

between map colors and data values. Traditionally, the legends align the color boxes

vertically or horizontally in conjunction with the logical organization of the data values.

This conventional approach is often considered insufficient to clearly reveal the statistical
12

distribution of the data values. To provide more informative legends, Kumar (2004)

proposed combining a frequency histogram with the standard color-box legend. This

so-called frequency histogram legend (FHL), however, was sensitive to classification

parameters (e.g., classification method and number of classes) and did not depict

graphically both changes in class intervals and frequencies. Cromley and Ye (2006)

resolved this problem by replacing the frequency histogram with an ogive cumulative

frequency diagram. In contrast to FHL, the ogive legend was less sensitive to the

classification parameters: any change in the classification parameters altered only the

length of the color boxes on its horizontal axis and the cumulative frequency of data

observations on its vertical axis. Cromley and Cromley (2009) demonstrated the

usefulness of the ogive legend in the context of health disparity mapping. The authors

enhanced the original univariate cumulative frequency diagram by including covariates of

the mapped variable. As argued by Cromley and his colleagues, the ogive legend informed

the map reader of the statistical distribution of data values within each class, although its

informativeness was still limited to aspatial aspects of intra-class variations.

On the whole, the literature on choropleth map design suggests that the design

process is a two-step exploratory activity where data characteristics are captured and

generalized as patterns, and the patterns then graphically depicted in a humanly

perceptible fashion. Associations in spatial and aspatial organizations of data values are

hidden in the data; indeed iterative explorations through data classification may be

required for the revealing and clear manifestation of the associations (Brewer and Pickle,

2002). Colors and legends also need careful design so that the uncovered associations can

be easily grasped by human eyes. Previously, the exploratory nature of choropleth

mapping was thought to interest only professional cartographers. However, the recent

growth of software packages capable of dynamic choropleth mapping has encouraged not

only expert cartographers but also domain scientists to investigate design parameters that

best serve the goals of their mapping projects (Brewer et al., 1997). As will be discussed

13

below, the rapid developments in online mapping technologies are, once again, expanding

the realm of choropleth map design even to citizen scientists and casual users (Andrienko

et al., 1999; Tsoulos, 2005; Boulos et al., 2005).

2.2 Online Mapping

Online mapping or web mapping refers to the activities of designing, producing,

distributing, and sharing online maps (Neumann, 2012). The advent of the Internet opened

the door to exchanging map data, files, and graphics across distributed networks (Slocum

et al., 2009). The World Wide Web has provided a virtual space where maps and mapping

software programs are accessible to a wide range of users, while allowing for various

types and levels of communication and collaboration among map providers and users

(Plewe, 2007; Tsou, 2011). Since the first online appearance of maps and mapping

applications, relevant technologies have advanced at a rapid speed and substantially

altered how maps are produced, distributed, and used online (Peterson, 2012a). These

continuing changes also have significant implications for online delivery of choropleth

maps. This section examines central aspects of online mapping technologies and relevant

research developments. It also discusses implications for choropleth mapping from

advances in online mapping technologies and research.

2.2.1 Architectural Concerns: Server-side and Client-side Mapping

The online delivery of maps involves two layers of computing resources: the server and

the client. Consisting of a single computer or a group of them acting in concert, the server

hosts maps, map-generating applications, geospatial data, and other processes, and

provides the user with access to those assets. The client is the web browser or similar

software program running on the user’s computer. It serves as an interface between the

user and server by handling data requests and responses on behalf of the user. Since the

distribution of the workload between the server and client has substantial impact on how

maps are generated and used, research of online mapping has investigated different forms

14

of architecture design and evaluated their advantages and disadvantages. This subsection

examines three general designs for an online mapping application–server-side, client-side,

and hybrid mapping–and discusses how they can be used for choropleth mapping.

Server-side mapping refers to a software architecture in which the client side

merely works as a terminal for invoking user requests and presenting maps, while the

server side performs hefty tasks such as map generation, data processing, and analytical

computation (Tsou and Buttenfield, 2002). This architecture was adopted in the early

examples of online mapping applications like the Xerox Palo Alto Research Center

(PARC) map viewer (Peng and Tsou, 2003), the first Internet Geographic Information

Systems (GIS), and MapQuest, the first online routing system (Neumann, 2012). While

not as simple as these precursors, contemporary applications for online mapping are also

making intensive use of the server-side mapping architecture. In particular, applications

that provide large maps and advanced analytical capabilities employ server-side mapping

since high-end computer servers can accommodate the data storage and computational

requirements of those applications better than client-side computers owned by individual

users (Dent et al., 2009). Providing high-end computing capability for server-side

mapping, however, comes at a cost. Online mapping applications may become less

reliable since their functional stability is contingent on the availability and workload of the

server-side computing resources (Huang et al., 2011). Even simple operations for user

interaction, such as panning and zooming, require at least one “round-trip” of data

between server and client, thereby lowering the responsiveness of mapping applications

and increasing the amount of network traffic (Zaslavsky, 2000).

In contrast to server-side mapping, the architecture of client-side mapping assigns

the server side to work merely as a data host, while the client side carries out all the

map-associated activities (Tsou, 2004). This often requires a plug-in or native applications

to add special functionality beyond the basic capabilities of the web browser (Fu and Sun,

2010). Typical add-ons include Java applet, ActiveX, Java Web Start, Adobe Flash, and
15

Microsoft Silverlight (Lienert et al., 2012). In client-side mapping, applications can work

like a stand-alone software program and support fast user interaction once the necessary

add-ons and data are downloaded and installed on the user’s computer (Peng and Zhang,

2004). As such, applications designed for interactive analysis of small spatial data have

often adopted the client-side mapping architecture. However, the reliance on add-on

software and the time cost for application initialization have been criticized for causing

usability problems with online mapping applications (Neumann, 2012). The heterogeneity

in network bandwidth and client-side computing power also makes it challenging to

guarantee consistent performance of the applications using client-side mapping (Huang

and Lin, 2002).

An alternative to server-side and client-side mapping is a hybrid approach in which

substantial workloads are distributed in a balanced way across the server and client sides

(Fu and Sun, 2010). Although the equilibrium point in distributed workload differs among

mapping applications, the client side usually undertakes data manipulation and

visualization tasks that involve direct user interaction or the handling of user-provided

data (Dent et al., 2009). In contrast, the server side performs computation-intensive tasks

and the dispatch of commonly used spatial data such as base maps and data tables (Huang

and Worboys, 2001; Brown et al., 2008). As will be discussed later, recent developments

in service-oriented computing, web standards, and web 2.0 technologies facilitate the

adoption of a hybrid architecture for the construction of an online mapping application.

Distributed GIServices provide access to spatial data and operations that are hosted on

remote servers (Li, 2008). The widespread support for standard-based service interfaces

makes it easy to integrate various types of remote resources into a mapping application

(Batty et al., 2010). Because of the popularization of web 2.0 technologies, many data

providers are now offering mapping APIs for their geospatial data and services (Chow,

2008). Mapping APIs usually accompany client-side interface frameworks, but third-party

16

online mapping frameworks that provide advanced client-side functions for data handling,

analysis, and visualization also abound on the web (Neumann, 2012).

The review has discussed three general approaches to architecture design for

online mapping applications. While this broad categorization clarifies the basic structure

of mapping applications, many other factors affect an appropriate architecture solution,

such as goal, target users and data, anticipated user environments (e.g., bandwidth and

client-side computer specifications), functional and nonfunctional requirements, and

budget of a particular mapping application (Zaslavsky, 2000). In the context of choropleth

mapping, server-side mapping is more suitable than the other architecture solutions for the

online dissemination of static maps, on-demand generation of real-time maps, and

integration of computation-intensive analytics with choropleth maps. If application

developers want to enable the interactive design of choropleth maps, client-side or hybrid

mapping will be of more interest than the server-side mapping approach. Another issue of

importance in the choice of an application architecture is which map data model to use.

This is because certain technologies geared for a map data model restrict the ranges of

matching software architectures. The following subsection examines different map data

models, relevant technologies, and their relation to architecture design.

2.2.2 Map Data Models: Raster and Vector Mapping

The encoding of map data is a crucial concern in online mapping. Two data encoding

models have been employed: raster and vector. The raster model uses rows and columns

of pixels to encode map data, while the vector model represents geographic features as

discrete objects, encoding them as simple points, lines, polygons, and the like (Dent et al.,

2009). Research in online mapping has focused on evaluating and improving the potential

of these data models for web-based map visualization. In particular, it has investigated the

feasibilities and capabilities of evolving web graphics technologies, and has proposed

frameworks for harnessing those technologies for online mapping.

17

The most popular conventional approach to online map dissemination is to

generate raster images from a digital or paper map and distribute them over the Internet

(Esri, 2006). Data of scanned paper maps or automated mapping systems are usually

installed on the server side, and the client side simply retrieves the map images from the

server. Various formats for raster images exist, and those optimized for network

transmission are intensively utilized for online mapping (Slocum et al., 2009). Examples

include Joint Photographic Experts Group (JPEG), Graphics Interchange Format (GIF),

Portable Network Graphic (PNG), and Tagged Image File Format (TIFF). Using raster

image formats for online map delivery has at least three advantages (Dent et al., 2009).

First, raster images can be easily viewed in modern web browsers and embedded into web

pages. Second, most mapping engines can export maps in a raster image format. Third,

many software frameworks for online mapping support the handling of raster image

formats; thus, the entry barriers to implementing a raster-based online mapping

application are relatively lower than those for a vector-based application. Along with

these advantages, the disadvantages of raster image maps are also well known. In

comparison to vector map data, the graphical quality of raster image maps varies with the

resolution of the image files. Low-resolution images are small in data size but tend to be

poor in graphical quality (Cecconi and Galanda, 2002). On the other hand, high-resolution

images can provide high-quality graphics but may increase the network traffic and

response times of a mapping application (Peng and Zhang, 2004). Because geographic

features cannot be identified in raster images, and any small changes to the images induce

data exchanges with the server, user interactivity tends to be limited with raster image

maps (Andrienko and Andrienko, 1999; Zhao and Shneiderman, 2005).

Dissatisfaction with raster-based mapping has resulted in various research

endeavors to operationalize vector-based online mapping. The main idea underpinning

vector mapping is to render geographic features directly on web browsers (Zaslavsky,

2000). Since geographic features in vector maps are represented as discrete objects with

18

their own geometric coordinates and attributes, the maps can afford a wider range of user

interaction and higher levels of graphical quality when compared to raster images of

similar resolutions (Neumann and Winter, 2005; Neumann, 2012). In addition, vector

maps are free from resolution-related problems (e.g., pixelation) and can respond to user

inputs, such as changes in cartographic symbols, without generating a lot of network

traffic (Peng and Zhang, 2004; Boulos et al., 2005). Despite these advanced capabilities of

vector maps, they have not been used as widely as raster maps, primarily for three reasons.

First, vector graphics have not been well supported by web browsers (Dent et al., 2009).

Special add-ons such as Adobe Flash and Java Web Start are often required to enable

vector-based interactive mapping on web browsers (Steiner et al., 2002). Second, such

add-ons are usually operational only on certain web browsers. This limitation may force

users to work with specific web browsers regardless of their preference, thereby causing

serious usability problems (Lienert et al., 2012). Finally, vector data tend to be voluminous

when text-based encoding is used for data transmission. Although vector data can be

downsized through precision reduction and compression, they usually take a longer time

to download and render than raster map images of a similar resolution due to additional

overheads caused by decompression, parsing, and drawing (Peng and Zhang, 2004).

Despite the downsides, vector mapping has continued to draw research attention in

cartography and geovisualization. Early studies often utilized Java applets and Java Web

Start to enable interactive vector mapping on the web (Andrienko et al., 1999; Andrienko

and Andrienko, 1999; Takatsuka and Gahegan, 2001; Anselin et al., 2004). As new web

technologies and standards became available for the description and rendering of vector

graphics, multiple studies investigated their applicability to online mapping. For example,

Zaslavsky (2000) developed a web map publishing kit called AXIOMAP where vector

shapes encoded in extensible markup language (XML) were downloaded and transformed

into graphic objects represented in vector markup language (VML) on web browsers.

Steiner et al. (2002) used XML and Macromedia Flash to enable advanced techniques of

19

user interaction, such as linking and brushing, in online maps. By integrating open

standards like geography markup language (GML), web feature service (WFS), and

scalable vector graphics (SVG), rather than employing proprietary technologies, Peng and

Zhang (2004) and Yao and Zou (2008) reported that they could improve both the

interoperability of online mapping applications and the graphical quality of map products.

Pavlicko and Peterson (2005) and Boulos et al. (2005) also demonstrated that SVG is

appropriate for topographic mapping and interactive visualization of health data (e.g.,

dynamic choropleth mapping). Recently, a new vector graphics technology, HTML5

Canvas, has started to attract research attention as an enabler for client-side interactive

vector mapping because of cross-browser support for the HTML5 standard (Boulos et al.,

2010). Details of SVG, HTML5, and Canvas, the focus of this dissertation study, are

further discussed in Section 2.3.2.

To summarize, the representation and encoding of map data are technical issues

requiring multicriteria decision making. Raster map data may be efficient to produce and

deliver, but impose limits on map interactivity, graphical quality, and application

architecture (i.e., the use of server-side mapping). In contrast, vector map data may feature

high levels of interactivity, graphical quality, and flexibility in the choice of application

architecture (i.e., support for both server- and client-side mapping). However, practical

technologies for vector web graphics are not as mature and widespread as those for raster

graphics. Prior research suggests vector map data would be better than raster map data for

dynamic choropleth mapping because they are superior in supporting interactive map

symbolization. The evolving standards and technologies for vector web graphics indicate

that the inefficiency issues with vector mapping, such as dependence on third-party

add-ons and voluminous data size, may not serve as substantial hindrance in the near

future as they have been until now. This potential, however, still needs to be proved

through empirical evaluations of typical use cases of interactive choropleth mapping. This

20

study addresses this research need by conducting such an evaluation with special attention

to the data capacities of various technologies for raster and vector mapping.

2.2.3 GIServices and Web 2.0

The software architecture and map data model constitute two foundational elements of

any online mapping application. Early studies focusing on these core elements paved the

way for recent innovations in online mapping in which maps, geographic data, and

geospatial operations are shared in interoperable ways, remixed creatively into

value-added applications even by amateurs, and augmented with volunteered geographical

information. As discussed below, these innovations have brought dramatic changes in the

production, use, and sharing of online maps, map data, and mapping applications.

Underlying the changes is a new class of technologies that facilitate standardized

interfaces between distributed geospatial data/software, end-user development of and

pleasant user experience with online mapping applications, and user contribution of

geographic data. This subsection examines this new generation of online mapping

technologies and discusses its impacts on online choropleth mapping.

2.2.3.1 GIServices

Online mapping applications deliver raster or vector map data from a server to clients.

While this traditional client-server architecture suffices for online map delivery, it does not

allow maps or map-making capabilities of one server to be reused and shared by other

software programs than its companion clients (Peng and Tsou, 2003). Provided the goal of

online mapping is map sharing, it is obvious that the conventional client-server

architecture restricts the scope and potential of reuse of online maps and even causes

unnecessary redundancy in online maps and mapping applications (Fu and Sun, 2010).

Although not designed specifically for online mapping, geographic information

services or GIServices have been adopted to overcome this limitation of the client-server

architecture (Tsou and Buttenfield, 2002). In this study, GIServices refer to a type of web

21

services that provide online access to geospatial data, maps, and operations (Longley

et al., 2005). GIServices allow remote users, either human or machine users, to access

their core contents and functions by providing standardized interfaces and communication

protocols (Tu and Abdelguerfi, 2006). In general, two approaches are taken to define

access protocols for GIServices: representational state transfer (REST) and simple object

access protocol (SOAP). The REST approach views GIServices as web resources that can

be retrieved, modified, created, and deleted through HyperText Transfer Protocol (HTTP)

request methods (Fu and Sun, 2010). In the SOAP approach, GIServices need to provide

formal metadata of their capabilities and exchange messages with special XML encoding

applied (Erl, 2005). Whichever access protocol is used, map servers can use GIServices to

share maps and map-making capabilities with a broad range of users and achieve

improved interoperability with various software programs. Of particular importance in

enabling such interoperable use of online maps are standards for GIServices.

Open Geospatial Consortium (OGC) is a non-profit, international organization

playing an active role in establishing standards for GIServices (Alonso et al., 2004; Tu

et al., 2004; Barclay et al., 2006). OGC standards related to mapping GIServices include

Web Map Service (WMS), Web Feature Service (WFS), Web Coverage Service (WCS),

Styled Layer Description (SLD), and Web Map Tile Service (WMTS). The first three

standards–WMS, WFS, and WCS–define interface rules for requesting map data in the

form of raster images (OGC, 2006b), vector data (OGC, 2004), and raw coverage data

(OGC, 2010), respectively. The fourth standard, SLD, includes a set of specifications for

describing cartographic symbolization that needs to be applied to output maps (OGC,

2007b). GIServices in support of WMS, WFS, and WCS should implement this standard

in order to allow dynamic cartographic symbolization. The last standard, WMTS, contains

interface specifications related to the description, request, and delivery of map tiles, i.e.,

tiny rectangular pre-rendered map images cached on a map server (Batty et al., 2010). As

will be detailed in Section 2.2.4, map tiles have gained popularity since Google started to

22

use them for fast and scalable map delivery on the web in 2005 (Peterson, 2012b). Since

then, various definitions and interfaces for map tiles have been developed by commercial

vendors and open-source development teams. WMTS is OGC’s response to this new need

and aims to harmonize diverse interface specifications for tiled map services (Masó et al.,

2010).

GIServices for online mapping communicate with client-side programs or other

services by exchanging data. For map data and their representations, OGC established

four standards: GML, Keyhole Markup Language (KML), Geographic Really Simple

Syndication (GeoRSS), and Symbology Encoding (SE). GML is a specialized XML

vocabulary for describing properties of geographic information such as geometry, data

attributes, coordinate reference system, topology, and coverage (OGC, 2007a). KML is

also an XML-based language for describing spatial data. Unlike GML, it includes

constructs for specifying both data and visualization properties (OGC, 2008). Really

Simple Syndication (RSS) is a set of data feed formats for publishing frequently updated

information such as blog entries and news headlines (Fu and Sun, 2010). GeoRSS is a

standard for encoding geographic location information included in RSS and other XML

data feeds (OGC, 2006a). Finally, SE is a standard language used to express grammars for

styling map data (OGC, 2006c). It extends XML and is used to formulate SLD documents

that describe cartographic symbolization for output maps.

OGC standards for GIServices, including those described above, have gradually

increased and diversified. This growth of standards may indicate expanding acceptance of

their usefulness in both software markets and real-world practices. Indeed, a good portion

of open-source GIS has been developed to enable online mapping capabilities in

compliance with OGC standards (Li, 2008; Steiniger and Hunter, 2013). Recently, the

uptake of those standards has been improved considerably even in commercial domains.

Well-known commercial server products such as ArcGIS Server (Esri, 2010) have begun

23

to support a core set of OGC standards parallel to their open source counterparts (e.g.,

MapServer and GeoServer).

Along with the increasing software support for the standards, numerous accounts

have been published to report the benefits of standards-based online-mapping applications.

For instance, Zhang and Li (2005) reported that WMS and WFS could facilitate real-time

geospatial data sharing in time-critical applications, such as emergency response and

traffic management, by simplifying data integration. In fact, the latest online systems for

disaster management, such as the Sahana system (Careem et al., 2007) and an Indian flood

monitoring system (Karnatak et al., 2012), use standards-based GIServices extensively for

the rapid collection and integration of heterogeneous spatial data. Similar endeavors can

easily be found in public health, as demonstrated by online mapping applications for

infectious disease surveillance (Gao et al., 2008), health exposure assessment (Evans and

Sabel, 2012), and thematic explorations of health data (Moncrieff et al., 2013).

The standards and technologies of GIServices have advanced substantially over

the past fifteen years or so. Online maps and the geospatial data behind them are now

accessible from a variety of client programs through GIServices, yet the access protocols

and data representations are standardized, varying little from one client to another. This

service-oriented, standards-based approach has catalyzed the online sharing and

integration of spatial data and maps across various domains and is gaining momentum in

wide-ranging software markets. In the context of choropleth mapping, the developments

in GIServices have multiple impacts. Access to online choropleth maps and spatial data

amenable to choropleth mapping have improved much since the introduction of

GIServices. As distributed spatial data can be easily integrated even in on-demand

fashions, dynamic choropleth mapping from the integrated data is increasingly being

requested. OGC standards for cartographic symbolization (e.g., SE and SLD) now allow

for the standardized application of interactive choroplethic symbolization in a limited

range of data classification methods. However, fundamental knowledge still remains to be
24

gained about what kinds of technological solutions are available to address these rising

needs for dynamic online choropleth mapping and how suitable they are in different

contexts of choropleth map use.

2.2.3.2 Web 2.0 and User-centered Geospatial Technologies

Advances in mainstream web technologies have significant influence on developments in

online mapping. An obvious example of this is recent innovations brought about by the

web 2.0 paradigm. Coined by Tim O’Reilly, the term web 2.0 refers to a collection of

strategies for better harnessing the new nature of the Internet, i.e., being a platform for

many things (O’Reilly, 2005). Online applications in this web 2.0 era differ from their

precursors in that they invite the user to participate in content design, generation, and

sharing (Goodchild, 2007). The applications are also distinctive as they provide end users

a suite of relatively easy-to-use development toolkits by which the users can integrate

various data and information to create their own novel applications (Batty et al., 2010).

Online mapping technologies and applications have served as key drivers in the spread of

the web 2.0 paradigm. This in turn has led to profound changes in the development,

distribution, and use of online maps through improved user experiences, the involvement

of amateur geographers (or neogeographers), and the massive production of

user-generated geographic information (Tsou, 2011).

Three technologies underpin the web 2.0 revolution in online mapping:

Asynchronous Javascript And XML (AJAX), mapping API, and tiled mapping. AJAX

refers to a suite of technologies for seamless data exchange between a server and clients

without refreshing the entire web page (Zucker, 2007). AJAX allows the user to interact

with a web application with little interruption due to webpage reloads. The resulting

reduction of wait time helps improve the user experience in online mapping (Tsou, 2005).

The provision of mapping APIs is another feature of online mapping services in the web

2.0 era (Chow, 2008; Haklay et al., 2008). When private companies such as Google and

25

Microsoft started to launch online mapping services, they also provided programming

APIs in order for end users to develop custom applications. These APIs are relatively easy

to learn and use, and facilitate end-user development by providing prebuilt graphical user

interfaces and free access to a multitude of high-quality spatial data and efficient

geoprocessing services such as data overlay, geocoding, and routing (Gibin et al., 2008;

Peterson, 2012a). Tiled mapping, the focus of this dissertation study, refers to a technique

which improves the efficiency of online mapping by using small rectangular map images

that are pre-split hierarchically along a fixed set of map scales (Sample and Ioup, 2010).

As discussed in Section 2.2.4, tiled mapping enhances the performance of online mapping

applications by returning only the tile images in current viewport from a remote cache

(Adnan et al., 2010). Combined with AJAX, it improves the responsiveness of mapping

applications, thus contributing to pleasurable user experiences in online mapping (Tsou,

2005).

Encompassing the enabling technologies for web 2.0, open source and commercial

GIS communities have provided a wide range of mapping APIs and software frameworks

for client-side map interface and server-side data provision. For example, the Open Source

Geospatial Foundation has been supporting multiple online mapping projects such as

OpenLayers and MapFish,1 creating a bridge between the web 2.0 and GIServices

approaches. ESRI and CloudMade are now providing APIs and services to access their

private data repositories and public geospatial data sources. CloudMade offers several

developer tools to access OpenStreetMap data,2 and ESRI provides online mapping

platforms where user contents are hosted and curated as web maps and applications,3 not

to mention APIs for Flex, Javascript, Silverlight, and mobile native applications.4 These

1http://www.osgeo.org/
2http://cloudmade.com/products
3http://www.esri.com/software/arcgis/arcgisonline
4http://www.esri.com/getting-started/developers/get-started

26

http://www.osgeo.org/
http://cloudmade.com/products
http://www.esri.com/software/arcgis/arcgisonline
http://www.esri.com/getting-started/developers/get-started

new tools for online mapping have enabled end users to create novel mapping applications

by integrating diverse types of distributed geographic data and services with high-quality

base maps (Batty et al., 2010). Called map or spatial mashups, these user-developed

applications have gained popularity in recent years and advanced from simple overlays of

data layers to interactive virtual spaces for data transactions, geovisualization,

geocollaboration, and geosocial activities (Elwood et al., 2012).

Two other technologies that relate strongly to web 2.0 online mapping are virtual

globes (or geobrowsers) and global positioning systems (GPS). Virtual globes are

software environments where the user can interactively explore 3D representations of the

Earth (Butler, 2006). Examples include Google Earth and World Wind from the National

Aeronautics and Space Administration (NASA). In these environments, users can freely

travel across the Earth’s surface, change their viewpoints flexibly, and overlay distributed

geographic data layers on the surface (Haklay et al., 2008). Virtual globes deliver realistic

displays of geographic environments, provide immersive user experiences, and can afford

3D geovisualization (Schultz et al., 2008). These unique features have made virtual globes

a major consumer of interactive online maps of various geospatial themes. GPS, another

crucial technology in the web 2.0 era, refer to navigational systems that use satellite

signals to determine the location of a radio receiver on or above the Earth’s surface

(Grewal et al., 2007). Nowadays, GPS are embedded in most smartphones that are capable

of attaching geographic coordinates to various contents they create, such as photos,

videos, blogs, and social media messages. This availability of GPS and standard data

formats have allowed citizens to contribute digital spatial data voluntarily (Turner, 2006)

and opt to provide spatial data on their activities (Elwood et al., 2012). The resulting new

data, termed volunteered geographic information (VGI) by Goodchild (2007), have been

used for various purposes, such as digital map creation (e.g., OpenStreetsMap),

place-based knowledge acquisition (e.g., WikiMapia), geo-marketing, and geosocial

networking (e.g., FourSquare).

27

The recent proliferation of VGI has impacted the practice and research of online

mapping significantly. One apparent effect of VGI pertains to the increasing

mass-production of user-centered online-mapping applications (Elwood et al., 2012).

Online services for VGI collection often employ computing platforms where

user-contributed data are automatically mashed up with other geographic data and

methods. For example, Flickr allows the user to upload and create online maps of photos

geotagged with references to framework geographic data such as satellite images and road

maps. Google Map Maker provides the user with GIS-like tools for adding and editing the

digital data of geographic features of interest. The rapid increase of these consumer- or

citizen-oriented mapping applications initially raised concerns about the lack of

opportunity to interlink the expertise of professional cartographers to user-centered map

production (Plewe, 2007). These concerns are still valid in the sense that new frameworks

are needed to better inform and guide the design and development of mapping

applications for producing, sharing, analyzing, and utilizing VGI (Tsou, 2011; Jones and

Weber, 2012). Some efforts to address these concerns have been made in the latest

services for user-centered online mapping: cartographic theories and practices have been

implemented as software tools that can aid lay users in the design of map styles and

cartographic symbols (Schmidt and Weiser, 2012).

The rise of VGI-driven mapping has also called attention to the issues of data

quality, ownership, and confidentiality. The amateur-driven, participatory, and asserted

nature of VGI indicates that data products may lack accuracy, completeness, consistency,

or reliability (Batty et al., 2010). While VGI data are indeed subject to a wide range of

uncertainties, recent studies suggest that volunteered framework data such as

OpenStreetsMap are actually as accurate as datasets from Ordnance Survey (Haklay,

2010); moreover, the currency and timeliness of such volunteered data could render them

more useful than conventional spatial databases in special cases like disaster response and

recovery (Goodchild and Glennon, 2010). Delicate legal and ethical issues of ownership

28

and confidentiality related to VGI remain largely unresolved and under-investigated

(Elwood et al., 2012). As VGI production may rely heavily on spatial data from

authoritative or private institutions, the legal rights of VGI need to be carefully

established. Some VGI may concern individual-level activities and could raise issues of

privacy invasion and confidentiality violation (Goodchild, 2007). In the context of online

mapping, these concerns of data quality and safety present challenges of how the relevant

information should be represented or addressed in the design, production, and

dissemination of VGI-based online maps without imposing many restrictions on the

creative use of the volunteered information.

In summary, the key innovation in web 2.0 online mapping is user-centered design

of maps and applications. User-centered design here exceeds user-friendly design or

usability improvements. It means the construction of virtual map-based spaces where

users can play with, work with, contribute, share, and create geographic data, information,

and knowledge. Advances in and the seamless integration of geospatial web technologies

have enabled the transformation of online maps from one-directional media of geographic

information to multi-directional web platforms where any user can be a prosumer of

geographic information. This paradigm shift in online mapping has multiple implications

for web-based delivery of choropleth maps. Although early versions of mapping APIs

lacked capabilities for advanced analytical mapping (Gibin et al., 2008), choropleth

mapping has been increasingly supported in their recent releases (Schmidt and Weiser,

2012). One anticipated result of this would be the increased engagement of end users in

choropleth map design by means of interactive spatial mashups. To help users design

quality choropleth maps, cartographic knowledge needs to be shared in the form of a

software tool that can serve as a guide. Technological solutions for dynamic online

choropleth mapping also need to be further developed to accommodate a broader range of

use cases for direct map design by end users.

29

2.2.4 Tile Mapping

Improved usability is one of the most frequently noted features of web 2.0 online mapping

applications (Haklay et al., 2008). As discussed earlier, two enabling technologies underly

this advancement: tile mapping and AJAX. In tile mapping, maps are first pre-rendered for

a fixed set of map scales and then divided into a series of small map tiles in a hierarchical

fashion (Peterson, 2012b). The resulting map tiles are stored on the server-side cache and

indexed for fast tile searches (Sample and Ioup, 2010). When the user requests a map,

tiles for the current viewport are retrieved from the cache and re-assembled on the web

browser. This approach of tile-based data partitioning has long been used for the efficient

management, storage, and retrieval of large map data (Quinn and Gahegan, 2010). Its

recent combination with AJAX, however, has brought dramatic changes to the user

experience in online mapping by allowing for fast map updates and continuous user

interaction by reducing the need for on-demand map rendering and complete page

reloading (Tsou, 2005). Providing some background for the tile mapping approaches, this

section prepares the way for the discussion of tile-based choropleth mapping.

Tiling is a common strategy for partitioning paper maps of large areas and

voluminous spatial databases (Goodchild, 1989). Its application to online mapping,

however, is a recent phenomenon. Microsoft TerraServer used a pyramid-like tiling

scheme to deliver high-resolution imagery data on the web around 2000 (Barclay et al.,

2000, 2006). In this scheme, the number of tiles grows with the map scale, often

quadratically. The details of the map diminish as the map scale decreases, because an

upper layer in the map pyramid is usually constructed by generalizing lower ones. While

this initial effort had drawn the attention of GIS and remote sensing professionals, it was

after 2005 when Google launched its online mapping service that tile mapping gained

popularity in a wider range of communities (Sample and Ioup, 2010). Three reasons exist

for the success of Google’s tile mapping approach. First, tiled maps were developed not

30

only from imagery data but also from vector databases containing complex road data.

Instead of pyramid-based resampling of raster images, careful map generalization was

applied to create images of pre-rendered road maps at different map scales (Quinn and

Gahegan, 2010). Second, Google used AJAX for online tile delivery so that the user could

obtain updated maps in a responsive manner without experiencing interruptions in map

interactions (Tsou, 2005). Third, Google provided mapping APIs through which the user

could reuse map tiles to develop custom applications (Chow, 2008).

Most online-mapping services, including Google Maps, currently provide map

tiles generated from raster images of pre-rendered maps. Map rendering starts with a

projection of source data. The spherical Mercator projection is widely used because it

facilitates map partitioning by creating a 2D map of the Earth with a 1-to-1 horizontal to

vertical aspect ratio (Sample and Ioup, 2010). Maps are usually pre-rendered since map

rendering takes a substantial amount of time, especially for remotely sensed data (Tsou,

2005). The time cost for map rendering is smaller for vector data. However, on-demand

tiling is often used only once when the tiles are initialized from rasterized vector features

(Quinn and Gahegan, 2010). Then they are cached to prevent repeated map rendering.

The number of map scales at which maps are pre-rendered is often limited to about 20 for

the world map. This is because as the number of map scales increases, so does the number

of map tiles, which could in turn incur tremendous costs for data storage infrastructures

(Peterson, 2012b). Maps, once rendered, are partitioned into tile images, generally by

using a quadtree scheme. Sample and Ioup (2010) recommended JPEG and PNG (among

others) for the image file format and 256×256 or 512×512 pixels for the tile size. JPEG is

proper for tiles of remotely sensed or very colorful imagery, while PNG is better for tiles

with a smaller number of colors or when map transparency needs to be adjusted. When

the recommended tile sizes are used, an optimality can be achieved between wasted tile

pixels and increased network traffic due to the use of tiles.

31

Map tiling has been employed not only in raster-based mapping but also in

vector-based mapping. Use of tiled vector data for online mapping has been studied at

least since 1999 when Wei et al. (1999) introduced a scheme for tile-based data

partitioning and transmission. Since then, research on client-side vector mapping has

occasionally discussed the application of tiling to vector databases as a performance

improvement strategy (Tu et al., 2001; Neumann and Winter, 2005; Campin, 2005).

Recently, research interest in vector tiling has been rekindled due to the advancements in

vector web graphics (Gaffuri, 2012), as elaborated in Section 2.2.2.

Conceptually, the tiling of vector data does not differ from its raster counterpart.

Vector data are processed to have an adequate level of detail (LOD) at a given map scale.

The resulting data are then divided into tiles for rapid data transmission over the Internet.

Operationally, vector tiling differs from raster tiling in four aspects: control of LOD, data

partitioning, content, and client-side rendering (see Figure 2.1 for illustration). The LOD

of a map varies with the map scale so that the map can maintain a similar level of

information density across different map scales (Gaffuri, 2012). Control of the LOD is

accomplished by decreasing the resolution in maps of raster images. Since the resolution

concept does not exist in vector data, detailedness in vector tiles is adjusted through

generalization (Neumann and Winter, 2005). Map generalization here can be purely

geometric, i.e., the reduction of geometric detailedness through vertex removal (Cecconi

and Galanda, 2002; Yang et al., 2007); or, it can change both geometric detailedness and

the geographic phenomenon represented by the data (Bertolotto and Egenhofer, 2001).

For example, points representing trees can be transformed into polygons representing

forest boundaries when the map scale decreases by one level. To support this kind of

scale-sensitive map representation, vector tiling often utilizes multiscale databases where

vector data are stored in such a way that incremental changes in data representation across

map scales can be easily computed (Kilpelainen, 2000; Ramos et al., 2009).

32

Figure 2.1. Illustration of raster and vector tiling

Two approaches can be used to partition vector data. First, vector data can be

divided into tiles as in raster tiling. In this case, geographic features that belong to

multiple tiles are split into several parts (Campin, 2005; Langfeld et al., 2008). An

alternative approach is to use tiles as a spatial index. Here, a tile becomes a bounding box

for querying geographic features (Gaffuri, 2012). Queries can be designed in such a way

that each geographic feature belongs to only one tile at a given map scale.

In terms of content, vector and raster tiles differ in that the former contain data

about geometric representation, attributes, and rendering information of geographic

features while the latter do not (Gaffuri, 2012). As elaborated in Section 2.2.2, this

difference in content has substantial influence on the size and file format of map data as

well as on how user interaction is supported in the final map.

33

Lastly, vector and raster tiling are dissimilar as to how tiles are rendered on the

client side. Raster tiles can be easily stitched on a web page simply by aligning them in an

appropriate order. In contrast, geometries in vector tiles need to be drawn on the web

browser, and if they are partitioned across multiple tiles, union operations need to be

performed on the downloaded geometries in order to maintain the topological

relationships in the original data (Antoniou et al., 2009). Downloading and drawing vector

graphics may take more than one or two seconds, a threshold online users are known to

tolerate (Nah, 2004). Progressive transmission and rendering of vector graphics can be

used to reduce negative user experience (Cecconi and Galanda, 2002; Yang et al., 2007).

Unlike raster graphics, for which many progressive rendering techniques are available,

custom client-side map interfaces need to be developed to support the incremental

drawing of vector geometries (Gaffuri, 2012).

Tiles, either in raster or vector format, are often cached in a server-side data store,

since generating tiles for multiple map scales takes substantial time, computing power,

and disk space (Peterson, 2012b). File-based storage, relational databases, and

memory-based cache can be used with an efficient scheme for tile indexing (Sample and

Ioup, 2010). When it is expected that only some portion of a data layer will attract user

attention, selective tiling can be employed so that only frequently viewed tiles are cached

in advance for fast response, while infrequently requested map tiles are created on

demand. To inform selective tiling, tile usage can be monitored (Fisher, 2007) or

predicted based on the geographic configuration of a study area, such as the spatial

distribution of a residential population and road network (Quinn and Gahegan, 2010).

Techniques for data compression are also of interest in server-side caching since they help

to reduce the size of tile storage and network traffic (Yang et al., 2005). Lossy or lossless

techniques for image compression can be used to reduce the size of raster tiles (Dent et al.,

2009), while techniques for XML and payload compression (e.g., binary XML and gzip)

can be employed for vector tiles (Lienert et al., 2012; Gaffuri, 2012).

34

In addition to server-side caching, client-side caching of downloaded map tiles can

enhance the responsiveness of a mapping application and decrease the usage of the

network bandwidth for tile delivery (Zhao and Shneiderman, 2005). Since most web

browsers are designed to cache image files, client-side caching of raster tiles is

straightforward. In contrast, client-side caching of vector tiles requires careful schemes of

data management, since the size of the browser cache is limited and vector maps tend to

be larger than raster maps of a similar resolution (Ramos et al., 2009). New technologies

for client-side caching, such as local storage and browser-embedded databases, present

promising avenues for the distributed storage of map tiles between the client and the

server, which would bring performance improvement in online mapping (Boulos et al.,

2010).

To summarize, tile mapping has contributed to enabling efficient online delivery of

large map data, thus improving the user experience with interactive online-mapping

applications. Raster tiles are predominant in the current web, but advances in vector web

graphics have increased the interest in vector tiles. It is common in raster and vector tiling

to use cached tiles that are hierarchically partitioned across multiple map scales. However,

the two tiling methods differ in operational aspects of tile generation and representation,

such as the control of LOD and tile content. The developments in tile mapping suggest

that online applications for choropleth mapping could also benefit from tile-based map

delivery. Tile mapping would be particularly useful when on-demand rendering of

choropleth maps takes non-trivial time, thus hindering interactive map exploration.

Tile-based choropleth mapping, however, presents challenges when choropleth maps need

to be generated dynamically in accordance with user-defined design criteria, since

dynamic adjustments in map design prohibit map pre-rendering. As will be discussed

below, various approaches have recently been proposed to enable dynamic choropleth

mapping with map tiles.

35

2.2.5 Summary

The review in this section focused on past developments in online mapping technologies

and shows a paradigm shift from enabling online delivery of geographic information to

empowering end users to engage in the entire life cycle of geographic information

development and use. Architecture design and the map data model have been critical

concerns in online mapping and will continue to be such. Recent advances in GIServices

and web 2.0 technologies have provided various means for end users to produce,

contribute, consume, share, and integrate geographic information such as standards,

mapping APIs, and software frameworks for spatial mashups. Tile mapping has served as

a key catalyst in this evolution by allowing online mapping applications to respond to user

interactions quickly, leading to on improved user experience. These advances in online

mapping imply that interactive design of choropleth maps will be increasingly requested

by end users and that dynamic yet responsive choropleth mapping will be frequently

required for the visualization of geographic information that is integrated on demand. The

progress in tile mapping suggests that tiled maps may also result in enhanced

responsiveness in online choropleth-mapping applications, especially when the areal data

to be mapped are large and thus difficult to render in real time. The research in this

dissertation investigates arising technological approaches for addressing these new

demands in online choropleth mapping and evaluates their relative strengths in handling

large areal data.

2.3 Online Choropleth Mapping

Online choropleth mapping refers to the activities of designing, producing, distributing,

and sharing choropleth maps over the Internet. Since the advent of online mapping

technologies, online choropleth mapping has drawn substantial attention in the

cartography literature due to the popular use of choropleth maps across various domains.

Research initially focused on the application of different architecture designs to

36

choropleth mapping. Lately, the goal has been to increase data capacity by using map tiles

for the dynamic delivery of choropleth maps while supporting high levels of user

interaction. This section first reviews the traditional approaches to online choropleth

mapping. It then moves on to examine tile-based solutions for scalable choropleth

mapping and highlights the need for empirical assessments of their actual scalability.

2.3.1 Traditional Approaches

Choropleth maps are effective means for revealing patterns in geographic variations

measured at areal units (Slocum et al., 2009). The online delivery of choropleth maps has

gained momentum as governments and public institutions have provided citizen users

intuitive spatial interfaces to the statistical databases that are often collected for

administrative jurisdictions (Armstrong et al., 2003). An early example includes the

online thematic mapping interface developed for the 1991 United Kingdom Census of

Population (Andrienko et al., 1999). In this interface, interactive choropleth maps

provided the basis for for spatial exploration of population distributions and advanced

visualization capabilities such as dynamic querying and linking with statistical charts.

Similar approaches have been used until recently to develop electronic atlases and

interactive interfaces for special types of statistics. For instance, Tsoulos (2005) added

choropleth mapping capabilities to an electronic version of the Statistical Atlas of the

European Union, and Boulos et al. (2005) employed interactive choropleth maps to

facilitate geovisualization of health statistics. In the latter study, the authors emphasized

the importance of interactive choropleth mapping by asserting that the online sharing of

such a capability could help to better inform decision makers of the accessibility and

effectiveness of health facilities and programs.

Underlying the popularization of online choropleth maps are developments in

online mapping technologies. Advances in server-side, client-side, and hybrid mapping as

well as in raster and vector graphics have strongly influenced how online choropleth maps

37

are distributed on the web. Early applications for online choropleth mapping could be

categorized largely into two groups: those using raster-based server-side mapping and

those using vector-based client-side mapping. As discussed in Section 2.2, both

approaches have strengths and weaknesses: raster mapping applications are efficient in

map generation but limited in supporting high levels of user interaction, while vector

mapping applications allow for various types of user interaction but often require initial

downloading and the installation of third-party add-ons and map data. Recent

developments in GIServices and mapping APIs have remediated some of the weaknesses

in each approach. For example, OGC SLD and related software tools now allow for

dynamic cartographic symbolization in raster mapping applications (Evans and Sabel,

2012; Moncrieff et al., 2013), while mapping APIs and web mapping frameworks provide

map interfaces that can render vector graphics directly on web browsers without using

third-party extensions (Neumann, 2012).

Despite the advances in online choropleth mapping, it has been frequently reported

that interactive choropleth mapping of large areal data poses challenges for both mapping

approaches (Steiner et al., 2002; Zhao and Shneiderman, 2005). In interactive mapping,

choropleth maps need to be updated on demand to respond to user interactions. When the

maps are created from large areal data, such dynamic map generation often incurs a time

cost that online users are unwilling to tolerate (Gahegan, 1999; Guo et al., 2006). This

drawback of the conventional approaches has become increasingly problematic in the

recent past as areal data amenable to online choropleth mapping have grown rapidly

across various spatial scales. Governments and public institutions have made considerable

contributions to this data increase by establishing or improving information systems for

collecting and sharing geo-referenced statistics (Kwakkel et al., 2012). Big data coming

from diverse sources such as social media and search engines often include geotags and

are aggregated to various geographic units for spatial sense making of the data (Crampton

et al., 2013). When such aggregation is done at a fine spatial resolution, the resulting area

38

data become large both in data size and number of records. These days, data aggregation

and subsequent visualization are often requested in real-time fashion, but the conventional

approaches to online choropleth mapping have difficulty addressing such requests due to

their limits in handling large areal data.

In response to the challenge, Zhao and Shneiderman (2005) developed a variant of

the deferred shading method in which all geometries are rendered first and color shading

is applied later to image pixels through computations (Deering et al., 1988; McReynolds

and Blythe, 2005). In particular, the authors proposed to use a cache of color-coded raster

maps that were pre-rendered on the server side in such a way that the color code for each

pixel represented the identifying number of a spatial object in the source data. A Java

applet containing the cached raster maps was then downloaded to the client side, where

they were dynamically recolored as the user specified the parameters for choropleth

mapping (Zhao and Shneiderman, 2005). This approach allowed for client-side real-time

updates of the choropleth maps and could deal with census data as large as United States

(U.S.) counties with little increase in the size of the maps. Nonetheless, the proposed

approach was limited. The performance of client-side map updates relies on the

computing power of the client-side machines (Schmidt and Dev, 2008). In addition,

downloading raster maps may still increase users’ wait time if the maps cover a large

spatial extent and contain multiple map layers designed for different map scales.

2.3.2 Tile-based Approaches

Lately, several studies have adopted tile-based mapping to enable choropleth mapping of

large areal data. For example, Gibin et al. (2008) created a collection of raster tiles from

pre-rendered choropleth maps by adopting the raster tiling approach (Figure 2.2a). This

approach, however, was ineffective for dynamic choropleth mapping. Unlike base maps

that are mostly static, choropleth maps can have numerous representations according to

user-defined parameter settings such as the variable to be mapped, data classification

39

method, number of classes, and color scheme (Armstrong et al., 2003). Thus, it is difficult

to pre-generate tiles for all possible choropleth maps unless map providers delimit the

range of the supported parameters. Aware of this problem, Mateos and O’Brien (2011)

chose to have both rendering and tiling performed on demand (Figure 2.2b). This way, the

authors could avoid caching numerous tiles in advance but could still allow the user to

interactively create new choropleth maps.

In spite of its flexibility, the approach of Mateos and O’Brien (2011) was

computationally intensive. Schmidt and Dev (2008) proposed a solution for this problem

by combining the ideas of tile mapping and color-coded raster maps that were initially put

forward by Zhao and Shneiderman (2005). In this new proposal, color-coded raster maps

were pre-generated, tiled, and cached on the server (Figure 2.2c). As the user specified the

parameters for choropleth mapping, the tiles were recolored on the server side and

transmitted to the client side (Schmidt and Dev, 2008). Because the tiles were small and

had a fixed dimension, they could be dynamically recolored and downloaded in a short

amount of time. While this dynamic re-rendering of color-coded raster tiles had the

potential to enable scalable choropleth mapping, the approach was still subject to several

drawbacks such as limited support for direct user interaction with geographic features and

poor graphical quality of output maps in relation to vector maps of equivalent LODs.

An emerging alternative to raster-tile-based choropleth mapping is the use of

vector tiles. For example, the Polymaps library5 supports the dynamic creation of

choropleth maps by rendering vector tiles as SVG and Canvas elements on the client side

(Figure 2.2d). This vector-based approach aims to provide highly interactive and visually

appealing choropleth maps from large areal data (Azzi et al., 2011; Yau, 2011). To do so,

it seeks to harness the latest developments in web graphics technologies and map

generalization (e.g., geometry simplification). Clearly, this vector-based approach can help

5http://www.polymaps.org

40

http://www.polymaps.org

a. The approach of Gibin et al. (2008)

b. The approach of Mateos and O’Brien (2011)

c. The approach of Schmidt and Dev (2008)

d. The approach of the Polymaps library

Figure 2.2. Different approaches to tile-based choropleth mapping

41

increase the user interactivity and visual aesthetics of output maps since it renders areal

units as vector shapes. However, its effectiveness is contingent upon multiple factors, such

as the efficiency and quality of the map generalization, the type of and browser support for

the web graphics technology, and the computing power of the client-side computers.

The type of web graphics technology, among the factors listed above, has attracted

much attention in cartographic research as web technologies for vector rendering have

undergone many changes. The most recent innovation in this regard is the advent of

HTML5 Canvas and its competition with SVG, an established method for web-based

vector rendering. SVG is “an XML-based graphics format integrating vector graphics

elements, text, raster graphics, audio and video” (Neumann, 2012, p.575). It treats

individual vector objects as independently accessible document elements, each having its

own geometric and stylistic attributes as well as interactive behaviors (Huang et al., 2011).

In contrast, Canvas is a drawing API of HTML5, a candidate for the next version of the

HTML standard (W3C, 2011). The Canvas API allows for pixel-level drawing of vector

and raster graphics through executions of Javascript code (Lienert et al., 2012). Unlike

SVG, the Canvas API provides no means to access individual vector objects once it

completes rendering the entire image. These differences between SVG and Canvas would

have varying effects on the display of and user interaction with vector-tile-based

choropleth maps. Empirical investigations of such effects, however, have often been

conducted in ad-hoc or incomparable manners, thereby resulting in inconsistent results;

for example, Johnson and Jankun-Kelly (2008) reported Canvas performed less efficiently

than SVG in generating and supporting user interaction with parallel coordinate plots and

treemaps, while Boulos et al. (2010) indicated Canvas would be more efficient than SVG

in graphics rendering.

Overall, the literature reviewed thus far indicates that tile-based approaches to

choropleth mapping would scale better when dynamic, interactive mapping needs to be

supported. Despite the nascent nature of the literature, it provides encouraging
42

demonstrations, which raises another interesting question: How scalable are the tile-based

approaches in supporting the real-time rendering of and high-level user interaction with

online choropleth maps? This question remains under-investigated but deserves empirical

investigation for three reasons. First, large spatial data of small areal units have been

increasingly produced and distributed online, sometimes in real time. This increase in data

supply has also led to growing demands for dynamic and scalable choropleth mapping.

Yet, there is little knowledge of how existing and emerging technological solutions can

address the rising demands. Second and in relation to the first reason, researchers and

practitioners need solid benchmarks for making the technological choices that best suit the

requirements of their choropleth mapping applications with respect to scalability and user

interaction. Third, the use of tile-mapping methods whose scalability is empirically

proven would allow users to easily explore global spatial distributions of data values

measured at small areal units and remove the need for region-by-region exploration due to

the current data limits of choropleth mapping applications. Motivated by these reasons,

this dissertation study evaluates the scalability of three tile-based approaches: the raster

approach of Schmidt and Dev (2008), and the SVG and Canvas approaches of the

Polymaps library.

2.4 Summary

The literature review in this chapter provides a snapshot of the evolution of choropleth

mapping, online mapping, and their interaction, i.e., online choropleth mapping. The

literature on choropleth mapping clearly shows that choropleth map design is an

exploratory process requiring decision making concerning multiple design criteria, such as

data classification method, color scheme, and legend organization. Developments in

online mapping technologies have not only increased access to choropleth maps, but also

have increasingly allowed end users to participate in the exploratory process of choropleth

map design with large areal data. Tile-based mapping has been widely used for efficient

online delivery of large map data and has recently been employed to scale up the data

43

capacity of dynamic choropleth mapping. Although the emerging approaches to tile-based

choropleth mapping each claim to better support dynamic yet scalable choropleth

mapping, actual empirical benchmarks of their scalability do not exist in the current

literature, to the best of this author’s knowledge. The lack of such information impedes

the development and provision of online mapping applications that can allow end users to

interactively explore the spatial aspects of the fast-growing geospatial data by means of

choropleth mapping. As such, this dissertation study empirically assesses how different

approaches to tile-based choropleth mapping scale with the number of spatial objects in an

areal data set, in typical scenarios concerning the interactive use of choropleth maps.

44

CHAPTER 3

METHOD

The literature review in the previous chapter pointed out the lack of research on the

scalability aspects of the emerging tile-based approaches to online choropleth mapping.

To fill this gap in the literature, this study aims at assessing how scalable three tile-based

methods are in enabling dynamic choropleth mapping and supporting various types of

map interaction. In particular, the three methods under evaluation include the raster tiling

approach proposed by Schmidt and Dev (2008) and the SVG- and Canvas-based

approaches that use vector tiles, as in the Polymaps library. For the evaluation, the study

develops two test applications, one for the raster and one for the vector tiling approaches.

The vector application supports both the SVG- and Canvas-based tile-mapping approaches

without substantial changes in its architecture. The evaluation measured and compared the

response times of these applications in supporting multiple types of user interaction. This

chapter describes the functionality and implementation of the applications, the

characteristics of the test data sets, the procedure of map tile generation, and the

framework for the evaluation.

3.1 Test Applications

Both test applications (Figure 3.1) support a common task: the spatial exploration of a rate

variable. This functionality was chosen because choropleth maps are frequently used to

examine the spatial distribution of rates that are obtained by standardizing the counts of

disease events by the numbers of population at risk (Slocum et al., 2009). When raw rates

are used as the estimates for the risks of rare events, such as disease rates, they become

unreliable if the population at risk of the events is small (Waller and Gotway, 2004). To

address this problem, raw rates are often smoothed by accounting for the number of events

and population at risk at nearby locations or in the overall study area (Wang, 2006).

45

Estimates of risks based on rates in areas with small populations at risk can thus be

improved by “borrowing strength” from nearby populations at risk (Anselin et al., 2006).

The test applications allowed for data exploration by providing a set of interactive

functions that many choropleth mapping tools commonly support (Andrienko et al., 2002;

Zhao and Shneiderman, 2005). These functions are as follows:

• Dynamic choropleth map generation: Choropleth maps were created on the fly as

the user specified design parameters, such as the variable to be mapped, method for

data classification, number of classes, and type of color scheme.

• Map juxtaposition: Two choropleth maps of raw and smoothed rates were created

simultaneously and displayed side by side. This function helps the user assess

whether the smoothed rates reveal spatial patterns differently than the raw ones.

• Dynamic data query: Choropleth maps could be dynamically updated to answer

questions such as, “Where are the rates significantly different from their expected

values at a statistical confidence level of 95%?” By using the information of areal

units where a rate is likely to differ from its expected value and by permitting

flexible selection on a desired confidence level, this query tool allows the user to

carry out statistical inferences, in addition to visual inferences from a choropleth

map (Waller and Gotway, 2004).

• Map navigation: As with general reference maps, the user was able to pan and zoom

choropleth maps. These functions allowed the user to examine spatial patterns of

rates across different spatial scales and extents.

Both applications employed a client-server architecture. In the raster application

(Figure 3.2a), the server-side components served four functions: 1) providing access to

rates and their probabilities, 2) providing access to tiles, 3) rendering tiles, and 4) caching

the results of data classification. These functions needed to be carried out on the server
46

a. The raster application and its monitoring tool

b. The vector application and its monitoring tool

Figure 3.1. Snapshots of test applications
47

side since they required access to data, including map tiles and data tables. On the other

hand, the client-side components performed three tasks: 1) classifying the rates, 2)

handling user interaction with choropleth maps, and 3) displaying map tiles. Classification

of rates could have occurred on the server side; however, it was done on the client side in

order to make the implementation of the two test applications similar.

When compared to the raster application, the architecture of the vector application

(Figure 3.2b) had one distinctive feature: tiles were downloaded and rendered on the

client side. Because of this feature, the server side of the vector application only provided

access to map tiles. It neither carried out tile rendering nor cached the results of data

classification. On the other hand, the client-side components of the vector application were

similar to their raster counterparts, with the exception of the additional component for tile

rendering. Geographic coordinates of polygons in each vector tile were transformed into

screen coordinates. Polygons were then drawn as lines on an inline SVG or Canvas

element. In the Canvas-based version of the vector application, Canvas elements with the

2D context were used with the hardware acceleration option disabled in the browsers.

The test applications were implemented with a combination of software tools. In

both applications, the server-side components were created on top of the Python Django

framework and the Python spatial analysis library (PySAL). PySAL is a well-known open

source spatial analysis toolkit developed by the GeoDa Center at Arizona State University

(Rey and Anselin, 2007). In this study, it provided statistical computing capabilities for

rate estimation and spatial smoothing, while the Django framework enabled web

deployment of such analytical components and remote access to tile and source data. In

addition to these packages, the raster application employed the dynamic tile mapper

DynTM to cache the results of data classification and re-render raster tiles. On the client

side, both applications used the Polymaps library. This library not only supports the

display of raster tiles, but also the dynamic rendering of vector tiles. Additional client-side

48

a. The raster application

b. The vector application

Figure 3.2. Architectures of test applications

49

tools for data classification and user interaction handling were written in Javascript. The

source code used to develop the test applications is listed in Appendix 1.

3.2 Test Data

In this study, scalability is defined as the capability of tile-mapping approaches to

effectively render and interact with large areal data, in terms of the number of areal units

(Eick and Karr, 2002). For a valid assessment of this scalability aspect, the study created

choropleth maps of a fixed spatial extent while increasing the number of areal units within

that extent in a nearly linear fashion. The study operationalized this evaluation setup by

utilizing five different administrative boundaries of the conterminous U.S. in 2000. The

source data for those boundaries comprised Environmental Systems Research Institute

(ESRI) shape files with polygon geometry.

In particular, the test data of the study included the boundaries of counties,

primary care service areas (PCSAs),1 school districts, zip code areas, and census tracts.

These boundaries were chosen first, because they are frequently used for choropleth

mapping in practice; second, U.S. counties can be a good starting point for the evaluation,

since they are the largest data set for which the performance of an online

choropleth-mapping application has been reported (Steiner et al., 2002; Zhao and

Shneiderman, 2005); and third, because the numbers of areal units included in those

boundaries increase approximately by a factor of two in the order they are listed: 3,109;

6,469; 11,680; 29,885; and 64,919 polygons. This linear relationship in the numbers of

areal units makes it easy to interpret the evaluation results.

1PCSAs are a relatively new type of geographic unit defined by Health Resource and Services Adminis-
tration to better reflect flows of Medicare patients to primary care physicians (Mobley et al., 2006).

50

3.3 Tile Generation

Tile generation in this study was completed in two steps. First, some of the test data sets

were pre-processed to facilitate the tile generation. Second, raster and vector tiles were

created from each test data set. This subsection explains this two-step process in detail.

3.3.1 Data Pre-processing

Some of the test data sets, i.e., the boundaries of PCSAs and school districts, underwent a

pre-processing step due to difficulties with geometry simplification. As will be discussed

next, polygons in the test data sets were simplified for vector tiling, but this simplification

produced problems with the original boundary data of PCSAs and school districts mainly

because of topological errors in the source data. To address these problems, the study

artificially recreated those boundaries by spatially aggregating census tracts to PCSAs and

school districts in which the centroids of the tracts were completely contained. Although

this data processing was an arbitrary measure, it had little impact on the evaluation since it

did not change the numbers of the PCSAs or school districts.

3.3.2 Common Configurations for Map Tiling

Except for the map data model, the tiles used for this study were generated in similar

manners so as to enable a valid comparison between the raster and vector tiling

approaches. Both types of map tile were pre-generated in order not to introduce

confounding factors related to dynamic tile generation. The configurations for tile

generation were identical for both the raster and vector tiles. Before tiling, the test data

sets were projected on the spherical Mercator coordinate system since it is widely used for

tile-based online maps (Sample and Ioup, 2010). The typical quadtree-based tile grid was

employed for three zoom levels ranging from four to seven. The study limited tile

generation to this range of zoom level because the entire conterminous U.S. becomes

visible at zoom level four, and choropleth maps were zoomed in three times in a row

51

Table 3.1. The number and data size of raster tiles

Data set Number of Number of Data size of Minimum Maximum
Areal units Tiles Tiles (Mb) Tile size (B) Tile size (KB)

Counties 3,109 271 4.6 283 16.1
PCSAs 6,469 271 9.1 290 22.5

School districts 11,680 272 9.1 267 23.3
Zip code areas 29,885 271 15.0 302 27.5

Census tracts 64,919 272 12.2 267 29.4

during the evaluation as discussed in Section 3.4.1. Individual map tiles were indexed by

zoom level and the row and column numbers in the corresponding tile grid. They were

then stored in disk as separate files.

3.3.3 Raster Tiling

Raster tiling in this study followed the approach of Schmidt and Dev (2008). As such, the

tiles were generated in such a way that each areal unit was color-coded with its unique ID.

In particular, an unclassed choropleth map was first created for each test data set using the

IDs of the areal units. This map was then split into raster tiles by using the tile grid

explained above. The size of each tile was 256×256 pixels, and Portal Network Graphics

(PNG) formats, 24-bit true-color or 8-bit indexed, were used to store the tiles as image

files. The 8-bit PNG stores a palette of the colors included in an image file and utilizes the

color index in the palette as the final data values for raster pixels (W3C, 2003). Since the

size of the index value is only 8 bit, the indexed PNG can reduce the size of raster tiles to

some extent. The study used the 8-bit PNG for the tiles with a small number of colors and

the 24-bit PNG for the other cases. A tool included in DynTM was employed to generate,

store, and index the raster tiles. Table 3.1 shows the number and data size of the non-blank

raster tiles used for the evaluation.

3.3.4 Vector Tiling

The study used multiple steps of data processing for the vector tiling. In general, polygons

in the test data sets were first simplified for the various zoom levels and then partitioned

52

into rectangular tiles. For the simplification, the Douglas-Peucker algorithm (Douglas and

Peucker, 1973) was applied to the polygon data multiple times. The degree of

simplification or tolerance level was decreased as the zoom level increased.

Two challenges arose during repeated polygon simplification: preservation of

topological relationships among the polygons and determination of tolerance levels. Each

polygon in a shape file carries its own outline, even though it shares some portion of its

boundary with other polygons. This double representation of polygon outlines not only

results in topologically inconsistent polygons after simplification but also produces

numerous slivers and gaps between simplified polygons. To prevent this, the study first

converted polygon data into topologically correct polyline data in which only one line

representation existed for the shared boundary of two neighboring polygons. Geometric

simplification was then applied to the resulting polyline features, and the new polygon

geometries were constructed from the simplified lines. Since this process involved

multiple such conversions, the attribute data of the original polygons were lost. The

centroids of the original polygons were extracted and then spatially joined to the new

polygons in order to link the original attribute data to the new polygon geometries. While

the study employed a spatial joining operation for convenience, the identification numbers

of the original polygons could have been passed along in the conversions to preserve data

accuracy during simplification. The study utilized ET GeoWizards2 for this topologically

consistent polygon simplification, for which Figure 3.3 provides an overall summary.

Another challenge in vector tiling is the determination of multiple tolerance levels

for geometry simplification so as to vary the geometric detailedness of polygons across

zoom levels. Although multiple software tools exist for geometry simplification, few

provide the intelligence to inform a possible range of optimal tolerance values. Therefore,

the study used a bespoke tool to compute the minimum and maximum values of tolerance

2http://www.ian-ko.com/ET GeoWizards/gw main.htm

53

http://www.ian-ko.com/ET_GeoWizards/gw_main.htm

Figure 3.3. The process of vector tile generation

from the topologically correct polyline data (Appendix 2). It achieved this by computing

for all polylines the maximum possible distance between the polyline and its simplified

version, i.e., the threshold for simplification that is used in the Douglas-Peucker algorithm

(Douglas and Peucker, 1973). Through multiple experiments with a test data set, it was

found that a tolerance value greater than 20 percent of its allowed maximum tended to

induce severe geometric distortion in new boundaries. Thus, the study used 20 percent of

the maximum tolerance value for the lowest zoom level and then gradually decreased the

tolerance value for the higher zoom levels, by 0.04, the optimum increment chosen from

multiple trials with the test data set.

Handling polygons whose boundary crosses multiple cells in a tile grid is also a

critical concern in vector tiling. As discussed in Section 2.2.4, such polygons can be

partitioned into multiple parts with each being stored in the corresponding map tile.

Alternatively, the mapping between a polygon and a tile can be pre-calibrated and used as

a spatial index so that one polygon belongs to only one tile. The total size of tile data

54

Table 3.2. The number and data size of vector tiles

Data set Number of Number of Data size of Minimum Maximum
Areal units Tiles Tiles (MB) Tile size (KB) Tile size (MB)

Counties 3,109 271 5.6 308 0.4
PCSAs 6,469 271 11.2 311 0.8

School districts 11,680 272 18.7 307 1.0
Zip code areas 29,885 271 40.8 340 3.2

Census tracts 64,919 272 84.0 367 7.6

would be greater in the former approach than the latter since the polygon partitioning

process increases the total number of geometry primitives included in the tiled map.

Despite this drawback, the polygon partitioning method was employed in this study for

two reasons. First, it prevented invisible parts of polygons in a map tile from being

downloaded and rendered, incurring little unnecessary costs for rendering the map section

corresponding to the user’s current viewport (Gaffuri, 2012). Second, map tiles from the

data partitioning process facilitated tile-level drawing of vector primitives on an inline

SVG or Canvas element by reducing dependencies between tiles. This simplified the

client-side rendering and management of vector tiles.

The study stored each vector tile in a text file using GeoJSON encoding. GeoJSON

is a format for representing a variety of geographic data structures in Javascript object

notation (geojson.org, 2012), which is a lightweight data exchange format that humans

can read and write easily (json.org, 2012). This format was chosen since it uses relatively

compact representations of geographic features, especially when compared to GML

(Lienert et al., 2012). Vector tiles were not compressed at the file level but transmitted

with gzip compression enabled at the web server level for efficient data delivery. Once a

tile was transmitted, its geometry primitives were drawn as lines in an inline SVG or

Canvas element. Table 3.2 shows the number and data size of non-blank vector tiles used

for the evaluation. As expected, the total numbers of vector and raster tiles were identical,

but the total data size of the vector tiles was about 29 times larger than that of the raster

tiles, on average.

55

3.3.5 Comparability of Raster and Vector Tiles

The discussion thus far shows that various factors are involved in tile generation. It is

worth clarifying how they affect the evaluation in this study. First, pre-generation of raster

and vector tiles does not make the evaluation invalid. Although geometries are already

rendered in color-coded raster tiles while they are not in vector tiles, the former can be

considered to be “partially cached vector tiles” where geometries are rasterized in advance

but complete choropleth rendering is deferred (Deering et al., 1988). The study examines

whether this partial caching improves the scalability of dynamic choropleth mapping and,

if so, to what extent it does so in comparison to the pure vector-tiling approach. Second, it

needs to be affirmed that the study controlled for other factors related to the evaluation,

such as number of areal units, range of zoom levels, and tiling schemes. A common set of

values was used for these factors in both the raster and vector tiling for a valid comparison

of the test applications.

3.4 Evaluation Framework

3.4.1 Test Operations

In this study, five test operations were designed to evaluate the performance of the four

functions provided by the test applications. Specifically, the test operations served to: 1)

draw an overview choropleth map of the raw rates (dynamic choropleth mapping); 2) draw

two choropleth maps of the raw and smoothed rates in separate views simultaneously

(map juxtaposition); 3) filter the rates by probability and update the choropleth map

accordingly (dynamic data query); 4) zoom in three times sequentially (zoom in); and 5)

pan three times sequentially (pan). The study employed these test operations since they

are frequently used when the user creates and examines choropleth maps of rate variables

(Waller and Gotway, 2004; Zhao and Shneiderman, 2005). The first three of the test

operations directly paralleled the functions of the test applications. The zoom-in and

panning operations were designed to assess the map navigation functionality of the test
56

a. Raster application

b. Vector application

Figure 3.4. Workflows for dynamic choropleth mapping in test applications

applications. They were repeated three times in a row in order to reflect user interaction

spanning multiple map scales and large spatial extents.

Both applications supported all test operations, but the task distributions between

the client and server were different for the two applications. The first test operation,

dynamic choropleth mapping, was completed after four steps of work in both applications

(Figure 3.4): 1) displaying base tiles before choropleth rendering, 2) obtaining rates, 3)

classifying rates, and 4) re-rendering map tiles. While the tasks for steps 2 and 3 were

identical in both applications, those for steps 1 and 4 differed due to distinctive

characteristics of the base tiles: color-coded pixel-based images for the raster application

and simplified polygons for the vector application. This difference in tile data caused the

57

two applications to handle map tiles differently. In step 1, the raster application

downloaded and displayed base tiles on the browser while its vector counterpart

downloaded tiles and drew polygons for a client-side map display. The rendering of base

tiles was introduced to assess the time cost that the rasterization of polygons incurs in the

vector application in comparison to the simple display of tile images in the raster

application. Step 4 in the test operation was devised to obtain the time costs of tile

re-rendering after the initial rasterization of geometries. In this step, the raster application

processed tiles on the server side after caching the classification results in the server-side

memory for reuse. On the other hand, both the SVG and Canvas versions of the vector

application re-rendered map tiles on the client side without caching the data classification

results on the server side and downloading updated map tiles. In the SVG-based

application, map tiles were re-rendered by re-specifying the color style attribute of

polygon elements; thus the rasterization of polygon geometries was not repeated. In

contrast, all features in a map tile had to be completely redrawn in the Canvas-based

application, since Canvas provides no means to distinguish different geometry primitives

once they are drawn (Neumann, 2012).

The purpose of the second test operation, map juxtaposition, was to create two

choropleth maps at once: one of raw rates and another of smoothed rates. The test

applications undertook this operation by initiating two sessions of dynamic choropleth

mapping at the same time. Consequently, the task distribution across the client and server

was similar for map juxtaposition and dynamic choropleth mapping. However, the

workload of the test applications doubled during map juxtaposition.

The third test operation, dynamic data query, involved a workflow of three steps

(Figure 3.5): 1) obtaining probabilities, 2) filtering rates by probability, and 3)

re-rendering tiles. As in dynamic choropleth mapping, the tasks for the first two steps

were identical in both applications, but those for tile re-rendering were carried out in

different places: the server side in the raster application and the client side in the vector
58

a. Raster application

b. Vector application

Figure 3.5. Workflows for dynamic data query in test applications

application. For the second step of the test operation, this study used a fixed probability

threshold for rate filtering, i.e., 0.05. However, in real-world applications the user would

change the threshold interactively, and each change would result in a new classification

scheme that switched previously filtered polygons to unfiltered ones, or vice versa. To

correctly reflect these alternations in tile re-rendering, the vector-based applications had to

check the class changes in all geographic features contained in the map tiles and make

adjustments to their color values. The SVG-based vector application achieved this by

re-defining the color style attribute of the polygon elements. In contrast, the Canvas-based

vector application had to redraw the map tiles, since direct access to geometry primitives

is impossible in Canvas.

59

The fourth test operation, zooming in, required the test applications to increase the

map scale by one level along the pre-specified set of discrete map scales. Although

continuous map scales can be used for tile mapping, step-wise zooming along discrete

map scales is widely utilized since it simplifies the generation and retrieval of map tiles

(Sample and Ioup, 2010). Adopting the zooming based on discrete scales, the test

applications replaced the old tiles of a lower zoom level with the new tiles of the next

zoom level whenever the user zoomed in on the map. This study tested the zoom-in

operation for zoom levels ranging from four to seven, i.e., map users would first examine

an overview choropleth map of the U.S. at zoom level four and then start to zoom in on

the map. The operation zoomed in three times automatically for testing purposes. In each

zoom-in operation, the test applications obtained and rendered new tiles. Once all events

of tile loading and rendering were completed, the applications automatically initiated a

new zoom-in operation.

The last test operation, panning, involved three sequential changes in the map

extent as well. Each pan operation moved the map center by 256×256 pixels on the screen

in the northwestern direction at zoom level seven. Since this operation required the

acquisition and rendering of new map tiles for the panned area, with most of the new tiles

becoming visible only partially visible, the time cost due to the wasted real estates of the

map tiles was examined for each of the three tile-based approaches. As in the other test

operations, the workflow for completing the panning operation differed in the test

applications: tiles were rendered on the server and then displayed on the client side in the

raster application, while the rendering and display of tiles both occurred on the client side

in the vector application. Three sequential panning operations were executed

automatically; a new pan started once all tiles of the previous map were rendered.

So far, the discussion indicates that the workflows and implementations of the test

operations were different for the two test applications. Despite the differences, the

performances of the operations in these test applications can be compared for two reasons.
60

First, as asserted by Luotsinen et al. (2007) two methods are comparable if both of them

can be used to implement the same functionality or requirement. Second, as long as the

methods implemented in the test applications are what researchers and practitioners need

to choose from, a systematic investigation of their pros and cons is worthwhile as it

informs their potential users. Despite these justifications, the results of the comparison in

this study should be interpreted with careful consideration to the differences that exist in

the two applications.

3.4.2 Metric

This study assessed the scalability of the three tile-mapping approaches by measuring the

response times of the test applications when each test operation was executed. Response

time refers to “the amount of time that elapses from when a user submits a request until

the result is returned from the system” (Lilja, 2000, p.19). The study used response time

because an online choropleth-mapping system not only needs to handle large areal data

but also needs to render a complete choropleth map from them in a short time. Response

times can serve as estimates for the user’s wait time (Laird and Brennan, 2006).

The study adjusted the general definition of response time above so that it could

better reflect the user’s wait time. From the user’s perspective, each test operation starts

when the user initiates it, and the operation ends when the resulting choropleth map is

completely displayed on the browser. To reflect this life span of the test operations, the

study defines response time as the amount of time that elapses from when a user initiates a

test operation until the resulting choropleth map is completely visualized on the user’s

screen. The main difference of this definition from the generic one is that it takes into

account the time the browser spends on rendering and/or displaying the map tiles after the

tiles are returned from the server.

To measure response times, the study developed one Javascript-based client-side

monitoring tool for each test application (Figure 3.1 and Appendix 1). This monitoring

61

tool first changed the state of the test application so that a test operation could be invoked.

For example, before the test operation for dynamic data query was assessed, the

monitoring tool prepared a choropleth map to which the query was applied. Next, the

monitoring tool automatically initiated the test operation and recorded the initiation time.

Then, the monitoring tool waited for the test application to complete the test operation,

obtain map tiles, and display them as a complete choropleth map. The time interval

between the test operation being initiated and the map display being completed was

measured in milliseconds and recorded as the response time. The monitoring tool could

automatically repeat this measurement of response time and avoided the potential side

effect of browser-side caching on the measurement by removing all cached data related to

map tiles, rate data values, and classification results whenever a new measurement begun.

To increase the reliability of the measured response times, the study repeated the

measurement fifty times for each pair of test operation and data set, and used the average

for the evaluation. The study chose fifty as the sample size for two reasons. First, it

exceeded the generally known upper limit on the size of a small sample drawn from

normally distributed data, which is thirty (Lilja, 2000). Second, the time cost for obtaining

the fifty measurements for each pair set was affordable, ranging from fifty seconds to

more than two hours.

Generally, it is known that measuring the performance of a web mapping

application is complicated by multiple factors such as internet connection, network traffic

intensity, browser type, map size, operating system, and specifications of the client- and

server-side hardware (Kraak, 2004). This study could not control for all of the various

conditions of these factors. In terms of Internet connection, only a local area network with

1 Gb/s of bandwidth was used for the evaluation. Similarly, the response times were

measured only for the case that one client (i.e., one test application) accessed the server.

As will be shown in Section 4.2, a unit increase in network traffic intensity or workload

would increase the response times of the test applications. However, it would have little
62

impact on how many areal units the applications could handle. Therefore, the study

limited the evaluation to the case of one client access.

In the study, the factor of browser type was controlled for to avoid confounding

effects that might be caused by potential associations between browser type and different

methods for web graphics rendering. In particular, the study focused on Google Chrome

Version 17.0 since it showed the highest level of support for HTML5 and SVG at the time

of evaluation (March 20, 2012).3 According to www.w3schools.com, the proportion of

Google Chrome users increased from 37.3 to 52.7% from March 2012 to April 2013 (the

time of this writing), which indicates the evaluation results of the study have now become

relevant to a majority of online users.4 Although the study focused on Chrome, the tile

mapping approaches evaluated here can be used in a broad range of web browsers that

support HTML5 and inline SVG. At present, these browsers include Internet Explorer 9.0

or later, FireFox 4.0 or later, Chrome 7.0 or later, Safari 5.1 or later, and Opera 11.6 or

later,5 which are in total used by at least 85.6% of the visitors to www.w3schools.com.

The operating system used for the study was Mac OS X v.10.6 Snow Leopard on

both the client and server sides. Although Johnson and Jankun-Kelly (2008) reported that

the SVG- and Canvas-based rendering of vector graphics showed similar scalability in

terms of the size of vector data across different client-side operating systems, the results of

the study should be interpreted in the context of using Chrome on the Mac OS X system.

The map size used in the evaluation was fixed at 800×400 pixels as this size could show

the entire conterminous U.S. When the map size is larger than that, only blank tiles will be

added as long as map tiles are available for the conterminous U.S. On the other hand,

smaller map sizes are ineffective for choropleth mapping of the U.S. since the view limits

the spatial extent to be explored. As for browser type, the factor of hardware specification

3http://caniuse.com/#agents=desktop&cats=HTML5,SVG
4http://www.w3schools.com/browsers/browsers stats.asp
5http://caniuse.com/#cats=HTML5,SVG

63

http://caniuse.com/#agents=desktop&cats=HTML5,SVG
http://www.w3schools.com/browsers/browsers_stats.asp
http://caniuse.com/#cats=HTML5,SVG

was controlled for to prevent erroneous conclusions that might be influenced by potential

correlations between specific hardware specifications and different methods for web

graphics rendering.

3.4.3 Test Environment

The test environment included two computers that served as server and client on a

network with 1 Gb/s of bandwidth. Both computers were Mac OS X v.10.6 Snow Leopard

systems with 2.8 GHz Intel Core 2 Duo processors and 4 GB memory.

64

CHAPTER 4

RESULTS

The previous chapter explained the test materials and evaluation framework that this study

used to assess the three tile-based approaches to choropleth mapping. This chapter

presents the results of the assessment with its focus on comparing the efficiency and

scalability of the three tile-based approaches during each test operation. The rules used for

the assessment are that the less time it takes to complete a test operation with a test data

set, the more efficient the tile-mapping approach is, and that the more areal units a test

operation can handle in a unit time, the more scalable the tile-mapping approach is.

4.1 Dynamic Choropleth Mapping

Table 4.1 and Figure 4.1 show the average response times of the test applications during

dynamic choropleth mapping with the three tile-mapping approaches. As evident in these

results, the raster approach was the most scalable, since it took the shortest times to

complete dynamic choropleth mapping with all test data sets. The Canvas approach was

ranked next in terms of scalability: as the number of areal units increased from 3,109 to

64,919, the time for dynamic choropleth mapping increased 4.07 and 12.15 times in the

raster and Canvas approaches, respectively. The SVG approach was the least scalable:

Table 4.1. Average response times during dynamic choropleth mapping

Raster SVG Canvas
Number of Average Margin Average Margin Average Margin
areal units (milliseconds) of error of error of error

(α = 0.05*)
3109 311.80 28.39 684.14 16.49 447.42 10.38
6469 320.24 19.67 1100.66 25.06 658.86 10.79

11680 384.50 15.30 2103.30 46.10 1112.50 13.36
29885 748.76 18.88 6415.10 235.19 2642.42 27.52
64919 1580.12 16.69 49625.62 976.09 5929.74 127.29

* α represents significance level.

65

*The bars in the figure represent margins of error at 95% confidence level.

Figure 4.1. Response time chart of test applications (dynamic choropleth mapping)

when the number of areal units increased as before, the time for dynamic choropleth

mapping increased 72.54 times from 686.14 milliseconds to 49.62 seconds.

Section 3.4.1 explained that dynamic choropleth mapping was completed in four

steps: 1) displaying base tiles, 2) obtaining rates, 3) classifying rates, and 4) re-rendering

tiles. Table 4.2 shows the composition of the time spent on each step by the three

tile-mapping approaches. In the raster approach, on average 48% of the response time was

spent displaying and re-rendering tiles, while in the other approaches more than 80% of

the response time was spent handling tiles. A close look at Table 4.2 shows that the

percentage of the time spent on tile handling decreased with the number of areal units in

the raster approach, while the opposite pattern was observed in the SVG approach.

66

Ta
bl

e
4.

2.
D

et
ai

ls
of

tim
e

sp
en

to
n

dy
na

m
ic

ch
or

op
le

th
m

ap
pi

ng

a)
R

as
te

ra
pp

ro
ac

h
N

um
be

ro
f

D
is

pl
ay

ba
se

til
es

O
bt

ai
n

ra
te

s
C

la
ss

if
y

ra
te

s
R

e-
re

nd
er

til
es

To
ta

l
ar

ea
lu

ni
ts

m
ill

is
ec

on
ds

(%
)

31
09

86
.2

7
(2

7.
67

)
61

.4
4

(1
9.

70
)

16
.1

2
(5

.1
7)

14
7.

97
(4

7.
46

)
31

1.
80

(1
00

)
64

69
87

.9
1

(2
7.

45
)

10
9.

92
(3

4.
32

)
21

.1
2

(6
.6

0)
10

1.
29

(3
1.

63
)

32
0.

24
(1

00
)

11
68

0
88

.2
4

(2
2.

95
)

16
8.

56
(4

3.
84

)
27

.7
8

(7
.2

2)
99

.9
2

(2
5.

99
)

38
4.

50
(1

00
)

29
88

5
97

.3
1

(1
3.

00
)

43
3.

96
(5

7.
96

)
68

.7
0

(9
.1

8)
14

8.
79

(1
9.

87
)

74
8.

76
(1

00
)

64
91

9
11

2.
67

(0
7.

13
)

10
64

.2
6

(6
7.

35
)

13
2.

88
(8

.4
1)

27
0.

31
(1

7.
11

)
15

80
.1

2
(1

00
)

b)
SV

G
ap

pr
oa

ch
N

um
be

ro
f

D
is

pl
ay

ba
se

til
es

O
bt

ai
n

ra
te

s
C

la
ss

if
y

ra
te

s
R

e-
re

nd
er

til
es

To
ta

l
ar

ea
lu

ni
ts

m
ill

is
ec

on
ds

(%
)

31
09

37
2.

36
(5

4.
27

)
72

.1
2

(1
0.

51
)

27
.3

6
(3

.9
9)

21
4.

30
(3

1.
23

)
68

6.
14

(1
00

)
64

69
67

7.
32

(6
1.

54
)

11
3.

22
(1

0.
29

)
30

.4
8

(2
.7

7)
27

9.
64

(2
5.

41
)

11
00

.6
6

(1
00

)
11

68
0

11
35

.0
8

(6
4.

43
)

16
9.

50
(0

8.
06

)
46

.3
2

(2
.2

0)
53

2.
40

(2
5.

31
)

21
03

.3
0

(1
00

)
29

88
5

46
65

.5
0

(7
2.

73
)

43
1.

80
(0

6.
73

)
91

.9
4

(1
.4

3)
12

25
.8

6
(1

9.
11

)
64

15
.1

0
(1

00
)

64
91

9
45

24
6.

06
(9

1.
17

)
10

89
.6

2
(0

2.
20

)
33

5.
74

(0
.6

8)
20

54
.2

0
(0

5.
95

)
49

62
5.

62
(1

00
)

c)
C

an
va

s
ap

pr
oa

ch
N

um
be

ro
f

D
is

pl
ay

ba
se

til
es

O
bt

ai
n

ra
te

s
C

la
ss

if
y

ra
te

s
R

e-
re

nd
er

til
es

To
ta

l
ar

ea
lu

ni
ts

m
ill

is
ec

on
ds

(%
)

31
09

24
4.

49
(5

4.
64

)
60

.6
4

(1
3.

55
)

22
.3

0
(4

.9
8)

11
9.

99
(2

6.
82

)
44

7.
42

(1
00

)
64

69
32

6.
60

(4
9.

57
)

10
3.

46
(1

5.
70

)
27

.6
4

(4
.2

0)
20

1.
16

(3
0.

53
)

65
8.

86
(1

00
)

11
68

0
54

3.
73

(4
8.

87
)

16
3.

94
(1

4.
74

)
45

.1
2

(4
.0

6)
35

9.
71

(3
2.

33
)

11
12

.5
0

(1
00

)
29

88
5

13
08

.0
6

(4
9.

50
)

43
5.

70
(1

6.
49

)
10

5.
64

(4
.0

0)
79

3.
02

(3
0.

01
)

26
42

.4
2

(1
00

)
64

91
9

30
61

.3
1

(5
1.

63
)

10
91

.3
2

(1
8.

40
)

20
5.

40
(3

.4
6)

15
71

.7
1

(2
6.

51
)

59
29

.7
4

(1
00

)

67

The time cost for displaying base tiles varied little in the raster approach but

increased with the number of areal units in the vector-based approaches. For an identical

set of vector base tiles to be downloaded and drawn on the browser, the time cost for the

geometry rendering was, on average, 4.8 times larger in the SVG approach than in the

Canvas approach. The growth of the time cost was also much greater in the SVG

approach; the time cost increased 121.51 and 12.52 times in the SVG and Canvas

approaches, respectively, while the number of areal units changed from 3,109 to 64,919.

This result indicates that geometry rendering would hinder vector-tile-based choropleth

mapping and that the effects would be more severe in the SVG approach than in the

Canvas approach.

In the step for tile re-rendering, the average response time of the raster application

was affected little by an increase in the number of areal units. In contrast, the vector

application re-rendered map tiles slower as more areal units were shown on the map; the

time for tile re-rendering grew about 9.59 and 13.10 times in the SVG and Canvas

approaches, respectively, when the test data set altered from U.S. counties to census tracts.

Although vector tiles were re-rendered, on average,1.50 times faster in the Canvas

approach than in the SVG approach, this result shows that the former is more sensitive

than the latter to the increase of input areal units.

Altogether, the results in this section suggest that tile-based dynamic rendering of

choropleth maps is more efficient and scalable in the raster approach than in the vector

approaches. They also indicate that geometry rendering would present substantial

challenges for scalable choropleth mapping in both the SVG and Canvas approaches. In

the SVG approach, its negative effects would be greater than those of tile re-rendering.

4.2 Map Juxtaposition

The test operation for map juxtaposition involved two function calls for generating

choropleth maps of raw and smoothed rates (Section 3.4.1). Since these function calls

68

Table 4.3. Average response times during map juxtaposition

Raster SVG Canvas
Number of Average Margin Average Margin Average Margin
areal units of error of error of error

(α = 0.05*)
3109 461.44 15.62 1332.94 35.01 776.58 12.34
6469 527.20 13.70 2464.68 153.30 1195.42 11.94

11680 596.76 17.30 4618.12 224.50 2033.90 16.26
29885 1158.56 20.87 12559.58 55.20 4833.78 25.16
64919 2242.62 24.98 97214.52 422.91 10577.70 262.31

were made simultaneously, the workload of the test applications doubled in all three of the

tile-mapping approaches. Tables 4.1 and 4.3 show that when the response times for

choropleth mapping and map juxtaposition were compared, the doubled workload slowed

down the speed of map generation across all tile-mapping approaches. However, it was

apparent with all test data sets that the raster approach was the fastest in completing map

juxtaposition, the Canvas approach the second fastest, and the SVG approach the slowest.

In addition to the speed of map generation, the degree of its slowdown was also

analyzed (Figure 4.2). In the raster approach, the time cost for map juxtaposition (TM) was

1.42 (=2242.62/1580.12) ~1.65 (=527.20/320.34) times greater than that for dynamic

choropleth mapping (TD) (Tables 4.1 and 4.3). In the SVG approach, the ratio of TM over

TD varied from 1.94 (=1332.94/684.14) to 2.24 (=2464.68/1100.66) while in the Canvas

approach it ranged from 1.74 (=776.58/447.42) to 1.83 (=4833.78/2642.42). These results

show that the impact of the doubled workload was the largest in the SVG approach, the

second largest in the Canvas approach, and the smallest in the raster approach. This

pattern in the slowdown indicates that the increase in the workload does not change the

earlier observation that the SVG, Canvas, and raster approaches scale better in the order

they are listed.

69

Figure 4.2. Response time chart of test applications (map juxtaposition)

4.3 Dynamic Data Query

Table 4.4 and Figure 4.3 show that the time cost for dynamic data queries was always

largest in the Canvas approach while it was smaller and more similar in the other

approaches. In addition, while the time cost increased with the number of areal units in all

tile-mapping approaches, the amount of the increase was largest in the Canvas approach

(2902.64 milliseconds), second largest in the SVG approach (1525.60 milliseconds), and

smallest in the raster approach (1478.46 milliseconds). These results suggest that, unlike

the cases of dynamic choropleth mapping and map juxtaposition, dynamic data querying

was less efficient and scalable in the Canvas approach than in the other approaches.

The differences in the speed of dynamic data querying are attributable to the time

spent on tile re-rendering. As discussed in Section 3.4.1, the test applications completed

dynamic data querying by undertaking three tasks: 1) obtaining the probabilities of the

observed rates, 2) filtering the rates for which the probability was lower than 0.05, and 3)

re-rendering the map tiles to reflect the filtering results. Table 4.5 shows that while the
70

Table 4.4. Average response times during dynamic data query

Raster SVG Canvas
Number of Average Margin Average Margin Average Margin
areal units of error of error of error

(α = 0.05*)
3109 156.14 5.78 100.30 2.18 195.02 3.04
6469 212.04 5.27 153.92 7.00 333.66 7.52

11680 318.30 9.14 267.56 7.95 570.82 10.50
29885 747.38 10.83 684.00 14.77 1384.90 22.55
64919 1634.60 13.96 1625.90 22.39 3097.66 29.44

time costs for the first two tasks were similar in the three tile-mapping approaches, it took

more time to re-render tiles in the Canvas approach than in the other approaches. This

result relates to the different processes of tile re-rendering in the tile-mapping approaches.

In the raster approach, the entire set of tiles constituting the current map had to be

completely re-rendered on the server side to visualize the effects of rate filtering. In the

Canvas approach, the polygons in the map tiles also had to be completely redrawn and

recolored to reflect new classification results. This was necessary since individual

geometry primitives become inaccessible in Canvas once they are drawn. In contrast, the

SVG approach allowed for direct access to geometry primitives after rendering them since

they are converted into identifiable elements in a web document. Because of this feature,

the effects of rate filtering could be achieved in the SVG approach by merely redefining

the color attributes of the polygons. These differences in the tile re-rendering processes

were unavoidable due to the unique properties of raster map tiles, Canvas, and SVG. They

were the main cause of the better performance of the SVG approach observed here.

4.4 Zoom in

In the tile-mapping approaches, the zoom-in operation involved dynamic rendering of new

tiles for a higher zoom level (Section 3.4.1). Because of this, the response times of the

zoom-in operation showed a similar pattern to those of dynamic choropleth mapping:

across all test data sets, zooming in three times took the shortest time in the raster

approach, the second shortest time in the Canvas approach, and the longest time in the
71

Figure 4.3. Response time chart of test applications (dynamic data query)

Table 4.5. Details of time spent on dynamic data query

Raster approach
Number of areal units Obtain probabilities Filter rates Re-render tiles Total

3109 93.50 3.64 59.00 156.14
6469 143.70 7.48 60.86 212.04

11680 237.58 10.34 70.38 318.30
29885 586.32 28.96 132.10 747.38
64919 1320.74 70.84 243.02 1634.60

SVG approach
3109 61.42 7.44 31.44 100.30
6469 100.20 10.42 43.30 153.92

11680 172.00 20.74 74.82 267.56
29885 445.50 52.72 185.78 684.00
64919 1097.82 119.08 409.00 1625.90

Canvas Approach
3109 61.94 7.10 125.98 195.02
6469 102.60 10.42 220.64 333.66

11680 164.22 16.80 389.80 570.82
29885 444.70 46.46 893.74 1384.90
64919 1082.36 112.16 1903.14 3097.56

* Values in this table are in milliseconds.

72

Table 4.6. Average response times during zoom-in operation

Raster SVG Canvas
Number of Average Margin Average Margin Average Margin
areal units of error of error of error

(α = 0.05*)
3109 356.44 7.20 1514.34 10.95 944.96 36.63
6469 496.78 13.64 2768.30 61.02 1340.86 14.63

11680 614.70 18.15 4735.64 71.64 2137.40 22.41
29885 1235.12 19.63 11346.96 30.90 4543.06 79.26
64919 1900.90 20.86 42223.56 1156.23 9574.22 130.28

SVG approach (Table 4.4). The time cost for the zoom-in operation also increased the

least in the raster approach (1544.46 milliseconds) as the number of areal units grew from

3,109 to 64,919; the amount of the time increase was the second least in the Canvas

approach (8629.26 milliseconds) and the most in the SVG approach (40709.22

milliseconds). Combined, these results indicate: 1) the zoom-in operation scaled better in

the raster approach than in the other approaches; and 2) while both vector approaches

were relatively inefficient, the zoom-in operation performed better in the Canvas approach

than in the SVG approach.

4.5 Pan

Figure 4.5 and Table 4.7 show the average response times of the panning operation in the

tile-mapping approaches. As with the zoom-in operation, the panning operation was the

slowest in the SVG approach across all test data sets. In contrast, it was not always the

case that the panning operation performed more efficiently in the raster approach than in

the Canvas approach: when the number of areal units was in the range of 2,227 to 2,414,

the time cost for the panning operation was smaller in the Canvas approach than in the

raster. In addition, the time cost increased the most in the raster approach (230.84

milliseconds) as the number of areal units grew from 385 to 2,414. For the same amount

of increase in the number of areal units, the time cost for the panning operation grew by

209.46 and 96.20 milliseconds in the SVG and Canvas approaches, respectively. These

results suggest that when the number of areal units is small (e.g., less than 2,414 units in
73

Figure 4.4. Response time chart of test applications (zoom in)

the particular case of the study), the panning operation could show a similar level of

efficiency in the raster and Canvas approaches but scale better in the latter approach.

Provided that new tiles obtained in each panning operation were mostly partially visible,

another indication of the results is that the time cost for rendering wasted parts of map

tiles would be similar between the raster and Canvas approaches but increase faster in the

former than in the latter, when the number of areal units stays within a relatively small

number like the 2,414 used in the study.

4.6 Summary

Overall, the results in this chapter indicate that the raster approach was more efficient and

scalable in most test operations than the SVG and Canvas approaches. Particularly, the

raster approach provided the best performance and scalability during dynamic choropleth

mapping, map juxtaposition, and zoom-in. For the same operations, Canvas performed and

scaled better than SVG. In contrast, for dynamic data query the performance of the raster

approach was similar to that of the SVG approach, while the Canvas approach responded

74

Table 4.7. Average response times during pan operation

Raster SVG Canvas
Number of Average Margin Average Margin Average Margin
areal units** of error of error of error

(α = 0.05*)
385 120.76 6.70 185.64 4.41 172.72 3.97
557 133.54 11.15 211.30 9.50 150.72 6.44
875 138.42 20.79 205.78 7.43 164.28 8.71

2227 198.66 10.77 309.92 6.55 192.60 3.61
2414 351.60 15.53 395.10 11.80 246.92 9.55

* α represents significance level.
** Values in this data column represent numbers of areal units within panned map extents.

Figure 4.5. Response time chart of test applications (pan)

the most slowly, due to the need for the complete re-drawing of the polygon geometries as

well as for re-shading of their colors. When the panning operation involved the addition of

new map tiles that included a relatively small number of polygons (e.g., 2,414 polygons as

in the study), the Canvas approach performed as efficiently as the raster approach.

75

CHAPTER 5

DISCUSSION

The previous chapter presented the results of this study and revealed the pros and cons of

the three tile-mapping approaches in supporting various types of user interaction required

for choropleth-map-based exploration of a rate variable. This chapter discusses their

implications in online choropleth and other forms of online mapping. It also examines the

limitations of the study.

The evaluation in this study showed that the raster approach was more efficient and

scalable for the dynamic rendering of choropleth maps than the other vector approaches

when benchmarked with the test applications and evaluation methods of the study. In all

test operations, the raster approach performed better than or equal to the vector

approaches. This result is consistent with the discussions in the literature that raster maps

are more efficient for online rendering than vector maps (Peng and Zhang, 2004; Zhao and

Shneiderman, 2005).

In the context of the study, the better performance of the raster approach related to

three factors: tile size, geometry rendering, and the method of tile re-rendering. First,

raster tiles were small in their data size while vector tiles were relatively large: the data

sizes of the map tiles ranged from 267 B to 29.4 KB in the raster tiles but varied from 307

KB to 7.6 MB in the vector tiles before the gzip compression was applied (Tables 3.1 and

3.2). Consequently, it took more time to download vector tiles than raster tiles. Second, as

discussed in Section 3.4.1, the conversion of geometric coordinates to an image space like

a screen display was necessary in the vector approaches while it was not in the raster

approach. Unsurprisingly, this need for geometry rendering presented increasingly large

costs in the vector approaches as the number of areal units grew. Third, color-coded raster

76

tiles were re-rendered by redefining the color code of each pixel while vector tiles were

re-drawn by re-specifying the color style of each polygon. Since the dimensions of a

raster tile were fixed at 256×256 pixels, the speed of dynamic tile re-rendering varied

little in the raster-based approach. However, the time for tile re-rendering increased with

the number of areal units in the vector approaches; the color attributes of pre-rendered

geometry elements had to be redefined in the SVG approach, while the entire set of

geometry primitives contained in the map tiles had to be redrawn in the Canvas approach.

From the above observations and the results of the evaluation, it can be concluded

that the raster approach is still more suitable for online choropleth rendering, especially

when the rendering needs to be supported for spatial data with large numbers of areal

units, such as statistics measured at small areal units and numerical attributes of buildings

and parcels in densely populated regions. Nonetheless, a note should be added that more

research is needed to understand how further optimizations would affect the scalability of

choropleth mapping in the vector approaches. Such optimizations include use of different

simplification algorithms, data compression methods, and file formats for vector tiles.

In terms of the vector approaches, the evaluation results in two findings. The first

is stated above: the vector approaches do not perform and scale as well as the raster

approach. However, they perform reasonably well when the data to be mapped are similar

to the boundaries of U.S. counties and PCSAs in terms of both geometric features and

number of areal units, if the computing environment of the online choropleth-mapping

application is equivalent to the test environment of the evaluation. This is because for

online display in general, “useful content needs to be loaded within 2 seconds” (Laird and

Brennan, 2006, p.169), and Tables 4.1 ~4.7 show that most test operations in this study

were completed within two seconds when the test data sets contained the boundary data of

U.S. counties and PCSAs, in which several thousand areal units resided.

77

The second finding that concerns the vector approaches and has not been

empirically corroborated by other studies in the cartography literature is that the Canvas

approach is more effective for online choropleth rendering than the SVG approach. The

results of the evaluation (e.g., Tables 4.1 ~4.3) show that the time spent rendering

choropleth maps was usually reduced by half in the Canvas approach when compared to

the SVG approach. Although this finding is applicable only to the case in which all

polygons in a tile need to be (re-)rendered, it suggests that the Canvas approach would be

more suitable for vector-based dynamic choropleth mapping than the SVG approach when

the data contain a relatively large number of areal units. Typical use cases of such

dynamic yet scalable choropleth mapping include the real-time generation of vector-based

visualizations of the modeling results of large study areas, and sensor data streams

aggregated at small areal units where the base geography of the mapped area is relatively

static.

Although tile rendering was more efficient in the Canvas approach than in the SVG

approach, one caveat should be added: it would take more effort to enable interactive

manipulation of areal units in the former than in the latter. This was demonstrated in the

test case of dynamic data query in which with Canvas, the interactive filtering of

insignificant rates involved not only the recoloring of polygons but also the redrawing of

their geometric shapes. In contrast, color attributes of individual polygons could be

modified without geometry rendering in the SVG approach. This observation suggests that

if advanced techniques for interactive spatial data analysis, such as linking and brushing,

need to be supported in the vector-based choropleth mapping of relatively small data,

SVG would be more cost-effective than Canvas, since it has built-in attributes and

functions for handling vector geometry shapes. When such visualization methods need to

be enabled through Canvas, it would be necessary to develop or extend client-side

software frameworks that are carefully optimized for cartographic rendering and

interactive data visualization.

78

Overall, the evaluation in this study demonstrated that the tile-based approaches

could indeed handle more than several thousand areal units, beyond which the traditional

methods for online choropleth mapping were reported to have performance problems

(Steiner et al., 2002; Zhao and Shneiderman, 2005; Schmidt and Dev, 2008). However,

the evaluation also revealed several directions for further improvements in the tile

mapping approaches. In the raster tiling approach, it is difficult to support user interaction

that involves direct manipulation of individual areal units. For example, user interaction

such as feature selection and map linking requires continuous updates of choropleth maps

as the user makes selections on the client-side screen. Since a map update involves

server-side tile re-rendering in the raster tiling method, it is still challenging to provide

responsive feedback to the user while he or she performs feature selection and map linking

on a raster-tile-based map. A solution would be to use an additional map layer where user

selections on the map were traced and selected polygons returned as a raster image or a

vector data set, so as to visualize the effects of the user selections on the client side.

In the vector tiling approach, improvements are required in the generation and

delivery of the vector tiles. As discussed in Sections 2.2.4 and 3.3, the LOD of a

vector-tile-based map is controlled through geometry simplification or map

generalization. At present, most algorithms for geometry simplification are

computation-intensive and have issues regarding the maintenance of topological

relationships among the geographic features of polygon geometry (Yang et al., 2007;

Antoniou et al., 2009). These limits in geometry simplification often present barriers to

on-demand generation of vector tiles. In addition to LOD control, it is important in

vector-tile-based mapping to produce map tiles of comparably small sizes in order to

avoid performance issues in tile downloading and client-side map visualization. Various

methods for data encoding and compression could be applied to reduce tile size, and the

method and degree of geometry simplification chosen in such a way that tile size varied

little within a pre-specified threshold value (Gaffuri, 2012).

79

Although the study focused on online choropleth mapping, the results of the

evaluation also have implications in improving the performance of other forms of online

mapping through map tiles. In general, both color-coded raster tiles and vector tiles can

facilitate the dynamic mapping of new data observed or computed at static geographic

configurations. Examples include the visualization of statistics aggregated from live data

streams (e.g., location-based social media data) or the results of on-demand spatial data

analysis where the study area is fixed but the parameters for the analysis vary according to

user selections. When the output data from such aggregation and analysis contain a large

number of geographic features and rapid delivery of the related maps is crucial, as in the

case of disaster response, the raster tiling approach would be preferable to the vector tiling

one because of its scalability. In contrast, when the end user needs to interactively add

new measurements for a small study area and examine their spatial distributions

dynamically, as in participatory mapping, the vector tiling approach would provide the

user with interactive yet responsive experience while supporting dynamic changes in map

symbolization locally on the client side.

Along with the implications discussed here, it deserves mention that the results of

the evaluation should be interpreted carefully due to the differences in the architectures of

the raster and the two vector approaches. As indicated in Section 3.4, the raster approach

requires a consistent network connection for dynamic choropleth rendering. Its efficiency

also depends on the specification of server-side hardware, as color-coded raster tiles are

re-rendered on the server side. In contrast, the performances of the SVG and Canvas

approaches rely on network bandwidth more than that of the raster approach because the

vector tiles tend to be larger than their raster counterparts. These approaches also perform

differently if the specification of the client-side computer changes. For the effective

delivery of online choropleth maps, researchers and practitioners need to take into account

these architectural differences as well as the efficiency of dynamic choropleth rendering,

in order to better satisfy the user requirements of their online-mapping applications.

80

Despite considerable effort to conduct an unbiased evaluation of the three

tile-mapping methods, this study was limited in that it could not control for various factors

that may have influenced the performance of the test applications. As discussed in Section

3.4.2, these factors included internet connection methods, network traffic intensity,

browser types, hardware specifications, geometry simplification algorithms, and methods

for data encoding and compression. It remains for future work to investigate specific

impacts of these factors on the efficiency of tile-based choropleth-mapping approaches.

81

CHAPTER 6

CONCLUSION

This dissertation evaluated the strengths and weaknesses of cutting-edge tile-mapping

approaches for enabling dynamic choropleth mapping of and user interaction with areal

data that include large numbers of polygons.

Online choropleth mapping of large areal data is an emerging research topic in the

literature on cartography, with implications for the web-based delivery of analytical

cartographic visualizations and various forms of atlases. The growing interest in this topic

pertains to recent developments in online mapping. End users now design and produce

online maps interactively, including choropleth maps. Traditional spatial data usable for

choropleth mapping have become increasingly available and accessible, especially

through GIServices and mapping APIs. In addition, real-time spatial data observed from

GPS and geospatial sensors are also being visualized through choropleth maps to facilitate

pattern detection in such massive data. From a technological viewpoint, these advances

indicate dynamic choropleth mapping will be increasingly needed for large areal data,

which existing approaches cannot easily accommodate. To address this need, several

tile-based methods have been proposed. For example, Schmidt and Dev (2008) developed

a scheme of using color-coded raster tiles in which changing the color codes can result in

a new choropleth map. Vector tiles have also been employed for dynamic choropleth

mapping in combination with web graphics technologies such as SVG and Canvas

(Gaffuri, 2012). While these tile-based methods demonstrated their feasibility, little

knowledge is available of their actual scalability, thereby complicating technical decision

making by providers of online choropleth maps.

82

This dissertation study sought to fill this knowledge gap in the literature of online

mapping by conducting an empirical evaluation of the scalability of three existing

tile-based methods for choropleth mapping: the raster tiling method of Schmidt and Dev

(2008), and the SVG- and Canvas-based vector tiling methods that are implemented in the

Polymaps library. For the evaluation, the study developed test applications for the raster

and vector tiling methods. The evaluation then focused on examining how the response

times of these applications varied as the number of areal units increased, within the

boundary of the conterminous U.S. This examination was conducted with a set of test

operations: dynamic choropleth mapping, map juxtaposition, dynamic data query,

zooming in, and panning.

While specific to the test applications and evaluation method of this study, the

evaluation resulted in two findings. The first finding is that the raster tiling method

performed and scaled better in most test operations when compared to the SVG- and

Canvas-based vector tiling methods. In particular, the raster method outperformed its

vector equivalents during dynamic choropleth mapping, map juxtaposition, and zoom-in.

This superiority of the raster method is attributable to the small size of the raster tiles,

pre-rendering of geometric configurations in the tiles, and relatively invariant time cost for

tile re-rendering. Given the evidence for the better scalability of the raster method, it is

recommended for use cases where dynamic yet rapid choropleth rendering of maps is

frequently requested for large areal data.

The second finding is that although neither vector tiling method was as scalable as

the raster tiling method, the Canvas-based method was more efficient and scalable than the

SVG-based method in supporting the choropleth rendering of vector tiles. While

SVG-based map tiles could be recolored by simple changes in the color attributes of the

polygons, the re-rendering of Canvas-based map tiles required the additional work of

redrawing the polygons. Even so, tile re-rendering usually took less time in the Canvas

method than in the SVG method, suggesting that dynamic vector-based rendering of
83

choropleth maps would become more responsive and scalable with Canvas. Despite this

superior performance of the Canvas method in tile re-rendering, it should be noted that

when user interactions incurred only partial updates of the tile, the SVG method was more

efficient than the Canvas method, since the former allowed for direct manipulation of

geometry primitives, while the latter did not. This result indicates that SVG could be more

cost-effective than its Canvas counterpart if choropleth maps need to allow direct user

interactions with individual geographic features.

The findings of this dissertation show that current technologies for tile mapping

indeed facilitate online choropleth mapping of large areal data. The present study can be

further extended in future research. The first direction for such an extension is to examine

how recent technologies for web-based 3D graphics would enhance the performance of

analytical cartographic visualization, including choropleth mapping. In particular, the web

graphics library (WebGL) is of interest for such investigations since it allows for direct

drawing of 3D graphics on web browsers through a Javascript API; it can also improve the

graphics rendering speed by accessing the graphics card of the client-side computer

(Lienert et al., 2012). This new generation of web graphics technologies provides

opportunities to mitigate the challenge of handling large spatial data in online mapping.

Yet, methodological frameworks remain to be established and evaluated to harness the

innovative graphics technologies for online mapping and geovisualization.

The second direction for related research is to explore and address the challenge of

scalable choropleth mapping in the context of mobile mapping. The primary concern of

online choropleth mapping is to allow a wide range of users to examine spatial

distributions of data variables across diverse computing environments, such as different

web browsers and mobile devices. Since end users increasingly access online maps from

mobile web browsers or native applications, scalable choropleth mapping would be an

issue in mobile mapping. In comparison to desktop environments, mobile computing

platforms are limited in terms of network connectivity, network bandwidth, and hardware
84

specification. New approaches that can account for such characteristics are necessary for

the efficient delivery of choropleth maps across mobile networks.

Overall, this study contributes to the literature of GIScience and cartography by

providing a useful benchmark of tile-based methods for online choropleth mapping of

large areal data. Researchers and practitioners can benefit from the benchmark when they

seek to develop online mapping applications capable of the dynamic choropleth mapping

of small area statistics, real-time measurements, and other forms of distributed geospatial

data that contain a large number of areal units. The benchmark should also be helpful for

geovisualization researchers who want to understand the potential of the state-of-the-art

online-mapping technologies for web-based geovisualization.

85

REFERENCES

Adnan, M., Singleton, A., and Longley, P. A. (2010). Developing efficient web-based GIS
applications. Technical report, CASA. CASA Working Papers (153).

Alonso, G., Casati, F., Kuno, H., and Machiraju, V. (2004). Web services: Concepts,
architectures and applications. Springer-Verlag, Berlin and Heidelberg.

Andrienko, G., Andrienko, N., Demsar, U., Dransch, D., Dykes, J., Fabrikant, S. I., Jern,
M., Kraak, M. J., Schumann, H., and Tominski, C. (2010). Space, time and visual
analytics. International Journal of Geographic Information Science,
24(10):1577–1600.

Andrienko, G., Andrienko, N., Voss, H., and Carter, J. (1999). Internet mapping for
dissemination of statistical information. Computers, Environment and Urban Systems,
23:425–441.

Andrienko, G. L. and Andrienko, N. V. (1999). Interactive maps for visual data
exploration. International Journal of Geographic Information Science, 13(4):355–374.

Andrienko, N., Andrienko, G., Voss, H., Bernardo, F., Hipolito, J., and Kretchmer, U.
(2002). Testing the usability of interactive maps in CommonGIS. Cartography and
Geographic Information Science, 29(4):325–342.

Anselin, L., Kim, Y.-W., and Syabri, I. (2004). Web-based analytical tools for the
exploration of spatial data. Journal of Geographical Systems, 6:197–218.

Anselin, L., Syabri, I., and Kho, Y. (2006). GeoDa: An introduction to spatial data
analysis. Geographical Analysis, 38(1):5–22.

Antoniou, V., Morley, J., and Haklay, M. M. (2009). Tiled vectors: A method for vector
transmission over the Web. In Carswell, J. D., Fotheringham, A. S., and McArdle, G.,
editors, Web and Wireless Geographical Information Systems, pages 56–71, Berlin and
Heidelberg, Germany. Springer-Verlag.

Armstrong, M. P., Xiao, N., and Bennett, D. A. (2003). Using genetic algorithms to create
multicriteria class intervals for choropleth maps. Annals of the Association of American
Geographers, 93(3):595–623.

Azzi, M., Caviglia, G., Ricci, D., Ciuccarelli, R., Bonetti, E., and Bontempi, L. (2011).
Dust: A visualization tool supporting parents’ school-choice evaluation process.
Parsons Journal for Information Mapping, 3(4):1–7.

Barclay, T., Gray, J., Ekblad, S., Strand, E., and Richter, J. (2006). Designing and building
TerraService. IEEE Internet Computing, 10(5):16–25.

Barclay, T., Gray, J., and Slutz, D. (2000). Microsoft TerraServer: A spatial data
warehouse. In Proceedings of the Nineteenth ACM SIGMOD International Conference
on Management of Data, pages 307–318. Dallas, Texas.

86

Batty, M., Hudson-Smith, A., Milton, R., and Crooks, A. (2010). Map mashups, Web 2.0,
and the GIS revolution. Annals of GIS, 16(1):1–13.

Bertolotto, M. and Egenhofer, M. J. (2001). Progressive transmission of vector map data
over the World Wide Web. Geoinfomatica, 5(4):345–373.

Boulos, M. N. K., Russell, C., and Smith, M. (2005). Web GIS in practice II: Interactive
SVG maps of diagnoses of sexually transmitted diseases by Primary Care Trust in
London, 1997-2003. International Journal of Health Geographics, 4(4):1–12.

Boulos, M. N. K., Warren, J., Gong, J., and Yue, P. (2010). Web GIS in practice VIII:
HTML5 and the Canvas element for interactive online mapping. International Journal
of Health Geographics, 9(14).

Brewer, C. A. (1996). Guidelines for selecting colors for diverging schemes on maps. The
Cartographic Journal, 33(2):79–86.

Brewer, C. A. (1997). Spectral schemes: controversial color use on maps. Cartography
and Geographic Information Systems, 24(4):203–220.

Brewer, C. A. (1999). Color use guidelines for data representation. In Proceedings of the
Section on Statistical Graphics, American Statistical Association, pages 55–60,
Alexandria, VA.

Brewer, C. A., Hatchard, G. W., and Harrower, M. A. (2003). ColorBrewer in print: a
catalog of color schemes for maps. Cartography and Geographic Information Science,
30(1):5–32.

Brewer, C. A., MacEachren, A. M., Pickle, L. W., and Herrmann, D. (1997). Mapping
mortality: evaluating color schemes for choropleth maps. Annals of the Association of
American Geographers, 87(3):411–438.

Brewer, C. A. and Pickle, L. (2002). Evaluation of methods for classifying
epidemiological data on choropleth maps in series. Annals of the Association of
American Geographers, 92(4):662–681.

Brown, C., Bartley, J., Chivite, I., Szukalski, B., and Shanks, R. (2008). ArcGIS in a Web
2.0 world. http:
//www.scdhec.gov/gis/presentations/ESRI Conference 08/tws/workshops/tw 983.pdf.

Butler, D. (2006). Virtual globes: the web-wide world. Nature, 439:776–778.

Campin, B. (2005). Use of vector and raster tiles for middle-size Scalable Vector
Graphics’ mapping applications. http://www.svgopen.org/2005/papers/
VectorAndRasterTilesForMappingApplications/index.html.

Careem, M., Bitner, D., and de Silva, R. (2007). GIS integration in the Sahana Disaster
Management System. In Van de Waller, B., Burghardt, P., and Nieuwenhuis, C., editors,
Proceedings of ISCRAM2007, pages 211–218, Delft, the Netherlands. Academic &
Scientific Publishers.

87

http://www.scdhec.gov/gis/presentations/ESRI_Conference_08/tws/workshops/tw_983.pdf
http://www.scdhec.gov/gis/presentations/ESRI_Conference_08/tws/workshops/tw_983.pdf
http://www.svgopen.org/2005/papers/VectorAndRasterTilesForMappingApplications/index.html
http://www.svgopen.org/2005/papers/VectorAndRasterTilesForMappingApplications/index.html

Cecconi, A. and Galanda, M. (2002). Adaptive zooming in web cartography. Computer
Graphics Forum, 21(4):787–799.

Chow, T. E. (2008). The potential of Maps APIs for Internet GIS applications.
Transactions in GIS, 12(2):179–191.

Cinnamon, J., Rinner, C., Cusimano, M. D., Marshall, S., Bekele, T., Hernandez, T.,
Glazier, R. H., and Chipman, M. L. (2009). Evaluating web-based static, animated and
interactive maps for injury prevention. Geospatial Health, 4(1):3–16.

Crampton, J. W., Graham, M., Poorthuis, A., Shelton, T., Stephens, M., Wilson, M. W.,
and Zook, M. (2013). Beyond the geotag: situating ’Big Data’ and leveraging the
potential of the geoweb. Cartography and Geographic Information Science,
40(2):130–139.

Cromley, E. K. and Cromley, R. G. (1996). An analysis of alternative classification
schemes for medical atlas mapping. European Journal of Cancer, 32A(9):1551–1559.

Cromley, R. G. (2005). An alternative to maximum contrast symbolization for classed
choropleth mapping. The Cartographic Journal, 42(2):137–144.

Cromley, R. G. and Cromley, E. K. (2009). Choropleth map legend design for visualizing
community health disparities. International Journal of Health Geographics,
8(52):1–11.

Cromley, R. G. and Ye, Y. (2006). Ogive-based legends for choropleth mapping.
Cartography and Geographic Information Science, 33(4):257–268.

Deering, M., Winner, S., Schediwy, B., Duffy, C., and Hunt, N. (1988). The triangle
processor and normal vector shader: a VLSI system for high performance graphics.
ACM SIGGRAPH Computer Graphics, 22(4):21–30.

Dent, O. D., Torguson, J. S., and Hodler, T. W. (2009). Cartography: thematic map
design. McGraw-Hill, New York, NY, USA, sixth edition.

Dobson, M. W. (1980). Commentary: perception of continuously shaded maps. Annals of
the Association of American Geographers, 70(1):106–107.

Douglas, D. and Peucker, T. (1973). Algorithms for the reduction of the number of points
required to represent a digitized line or its caricature. The Canadian Cartographer,
10(2):112–122.

Dykes, J. (1998). Cartographic visualization: Exploratory spatial data analysis with local
indicators of spatial association using Tcl/Tk and cdv. The Statistician, 47(3):485–497.

Eick, S. G. and Karr, A. F. (2002). Visual scalability. Journal of Computational and
Graphical Statistics, 11(1):22–43.

88

Elwood, S., Goodchild, M. F., and Sui, D. Z. (2012). Researching volunteered geographic
information: spatial data, geographic research, and new social practice. Annals of the
Association of American Geographers, 102(3):571–590.

Erl, T. (2005). Service-Oriented Architecture (SOA): Concepts, technology, and design.
Prentice Hall, Boston, MA.

Esri (2006). Comparing vector and raster mapping for Internet applications. Technical
report, Esri.

Esri (2010). ArcGIS Server 10 functionality matrix. Technical report, Esri.

Evans, B. and Sabel, C. E. (2012). Open-source web-based geographical information
system for health exposure assessment. International Journal of Health Geographics,
11(2).

Fisher, D. (2007). Hotmap: looking at geographic attention. IEEE Transactions on
Visualization and Computer Graphics, 13:1184–1191.

Fisher, W. D. (1958). On grouping for maximum homogeneity. Journal of the American
Statistical Association, 53(December):789–798.

Fu, P. and Sun, J. (2010). Web GIS: Principles and applications. Esri Press, Redlands,
CA.

Gaffuri, J. (2012). Toward web mapping with vector data. In Xiao, N., Kwan, M.-P.,
Goodchild, M. F., and Shekhar, S., editors, Geographic Information Science, Lecture
Notes in Computer Science 7478, pages 87–101, Berlin Heidelberg. Springer-Verlag.

Gahegan, M. (1999). Four barriers to the development of effective exploratory
visualization tools for the geosciences. International Journal of Geographic
Information Science, 13(4):289–309.

Gao, S., Mioc, D., Anton, F., Yi, X., and Coleman, D. J. (2008). Online GIS services for
mapping and sharing disease information. International Journal of Health
Geographics, 7(8).

geojson.org (2012). GeoJSON – JSON geometry and feature description.
http://geojson.org.

Gibin, M., Singleton, A., Milton, R., Mateos, P., and Longley, P. A. (2008). An
exploratory cartographic visualization of London through the Google Maps API.
Applied Spatial Analysis and Policy, 1:85–97.

Gilmartin, P. and Shelton, E. (1989). Choropleth maps on high-resolution CRTs: the
effects of number of classes and hue on communication. cartographica, 26(2):40–52.

Goodchild, M. F. (1989). Optimal tiling for large cartographic database. In Proceedings of
the Ninth International Conference on Computer-Assisted Cartography, pages
444–451, Baltimore, Maryland.

89

http://geojson.org

Goodchild, M. F. (2007). Citizens as voluntary sensors: Spatial data infrastructure in the
world of Web 2.0. International Journal of Spatial Data Infrastructure Research,
2:24–32.

Goodchild, M. F. and Glennon, A. (2010). Crowdsourcing geographic information for
disaster response: a research frontier. International Journal of Digital Earth,
3(3):231–241.

Grewal, M. S., Weill, L. R., and Andrews, A. P. (2007). Global positioning systems,
inertial navigation, and integration. John Wiley & Sons, Hoboken, New Jersey, 2nd
edition edition.

Guo, D., Chen, J., MacEachren, A. M., and Liao, K. (2006). A visualization system for
space-time and multivariate patterns (VIS-STAMP). IEEE Transactions on
Visualization and Computer Graphics, 12(6):1461–1474.

Haklay, M. (2010). How good is volunteered geographical information? A comparative
study of openstreetmap and ordnance survey datasets. Environment and Planning B,
37:682–703.

Haklay, M., Singleton, A., and Parker, C. (2008). Web mapping 2.0: The neogeography of
the geoweb. Geography Compass, 2(6):2011–2039.

Harrower, M. and Brewer, C. A. (2003). ColorBrewer.org: an online tool for selecting
colour schemes for maps. The Cartographic Journal, 40(1):27–37.

Huang, B. and Lin, H. (2002). A Java/CGI approach to developing a geographic virtual
reality toolkit on the Internet. Computers and Geosciences, 28:13–19.

Huang, B. and Worboys, M. F. (2001). Dynamic modelling and visualization on the
Internet. Transactions in GIS, 5(2):131–139.

Huang, H., Li, Y., Gartner, G., and Wang, Y. (2011). An SVG-based method to support
spatial analysis in XML/GML/SVG-based WebGIS. International Journal of
Geographic Information Science, 25(10):1561–1574.

International Cartographic Association, Commission II (1973). Multilingual dictionary of
technical terms in cartography. Franz Steiner, Wiesbaden, Germany.

Jenks, G. (1977). Optimal data classification for choropleth maps. University of Kansas,
Lawrence, KN.

Jenks, G. F. and Caspall, F. C. (1971). Error on choroplethic maps: definitions,
measurement, reduction. Annals of the Association of American Geographers,
61(2):217–244.

Jenny, B. and Kelso, N. V. (2007). Color design for the color vision impaired.
Cartographic Perspectives, Spring(57):61–67.

90

Jern, M. (2009). Collaborative web-enabled geoanalytics applied to OECD regional data.
In Luo, Y., editor, Cooperative Design, Visualization, and Engineering, volume 5738 of
Lecture Notes in Computer Science, pages 32–43. Springer, Berlin / Heidelberg.

Jiang, B. (2012). Head/tail breaks: a new classification scheme for data with a
heavy-tailed distribution. The Professional Geographer, in press.

Johnson, D. W. and Jankun-Kelly, T. J. (2008). A scalability study of web-native
information visualization. In Proceedings of graphics interface 2008, pages 163–168.
Canadian Information Processing Society.

Jones, C. E. and Weber, P. (2012). Towards usability engineering for online editors of
volunteered geographic information: a perspective on learnability. Transactions in GIS,
16(4):523–544.

json.org (2012). Introducing JSON. http://www.json.org.

Karnatak, H., Shukia, R., Sharma, V. K., Murthy, Y., and Bhanumurthy, V. (2012). Spatial
mashup technology and real time data integration in geo-web application using open
source GIS - a case study for disaster management. Geocarto International,
27(6):499–514.

Kilpelainen, T. (2000). Maintenance of multiple representation database for topographic
data. The Cartographic Journal, 37(2):101–107.

Kraak, M. J. (2004). The role of the map in a Web-GIS environment. Journal of
Geographical Systems, 6:83–93.

Kumar, N. (2004). Frequency histogram legend in the choropleth map: a substitute to
traditional legends. Cartography and Geographic Information Science, 31(4):217–236.

Kwakkel, J. H., Carley, S., Chase, J., and Cunningham, S. W. (2012). Visualizing
geo-spatial data in science, technology and innovation. Technological Forecasting and
Social Change, In Press.

Laird, L. M. and Brennan, M. C. (2006). Software measurement and estimation: A
practical approach. John Wiley & Sons, Inc., Hoboken, New Jersey.

Langfeld, D. D., Kunze, R., and Vornberger, O. (2008). Four-dimensional visualization of
time- and geobased data.
http://www.svgopen.org/2008/presentations/115-SVG Web Mapping/index.pdf.

Li, S. (2008). Web mapping/GIS services and applications. In Li, Z., Chen, J., and
Baltsavias, E., editors, Advances in Photogrammetry, Remote Sensing and Spatial
Information Science: 2008 ISPRS Congress Book, chapter 25, pages 335–353. Taylor &
Francis, London, U.K.

Lienert, C., Jenny, B., Schnabel, O., and Hurni, L. (2012). Current trends in vector-based
internet mapping: a technical review. In Peterson, M. P., editor, Online maps with APIs
and WebServices, chapter 3, pages 23–36. Springer, Berlin and Heidelberg.

91

http://www.json.org
http://www.svgopen.org/2008/presentations/115-SVG_Web_Mapping/index.pdf

Lilja, D. J. (2000). Measuring computer performance: A practitioner’s guide. Cambridge
University Press, Cambridge, UK.

Longley, P. A., Goodchild, M. F., Maguire, D. J., and Rhind, D. W. (2005). Geographic
information systems and science. Wiley, West Sussex, England, second edition.

Luotsinen, L. J., Ekblad, J. N., Fitz-Gibbon, T. R., Houchin, C. A., Key, J. L., Khan,
M. A., Lyu, J., Nguyen, J., II, R. R. O., Stein, G., Weide, S. A. V., Trinh, V., and Bölöni,
L. (2007). Comparing apples with oranges: Evaluating twelve paradigms of agency. In
Bordini, R. H., Dastani, M., and Dix, J., editors, ProMAS 2006, LNAI 4411, pages
93–112. Springer-Verlag, Berlin and Heidelberg, Germany.

MacEachren, A. M. (1982). Map complexity: comparison and measurement. The
American Cartographer, 9(1):31–46.

MacEachren, A. M., Crawford, S., Akella, M., and Lengerich, G. (2008). Design and
implementation of a model, web-based, GIS-enabled cancer atlas. The Cartographic
Journal, 45(4):246–260.

Masó, J., Pomakis, K., and Juliá, N. (2010). OpenGIS web map tile service
implementation standard. Technical report, Open Geospatial Consortium.

Mateos, P. and O’Brien, O. (2011). CensusProfiler - Creating accessible geovisualizations
of the census of population. University College London Working Papers Series Paper
174.

McReynolds, T. and Blythe, D. (2005). Advanced graphics programming using OpenGL.
Elsevier, San Francisco, CA, USA.

Mennis, J. (2006). Mapping the results of geographically weighted regression. The
Cartographic Journal, 43(2):171–179.

Mersey, J. E. (1990). Colour and thematic map design: the role of colour scheme and map
complexity in choropleth map communication. Cartographica Monograph No. 41.
University of Toronto Press, Toronto, Canada.

Mobley, L. R., Root, E., Anselin, L., Lozano-Gracia, N., and Koschinsky, J. (2006).
Spatial analysis of elderly access to primary care services. International Journal of
Health Geographics, 5(19).

Moncrieff, S., West, G., Cosford, J., Mullan, N., and Jardine, A. (2013). An open source,
server-side framework for analytical web mapping and its application to health.
International Journal of Digital Earth, DOI:10.1080/17538947.2013.786143.

Monmonier, M. S. (1972). Contiguity-biased class-interval selection: a method for
simplifying patterns on statistical maps. Geographical Review, 62:203–228.

Muller, J.-C. (1979). Perception of continuously shaded maps. Annals of the Association
of American Geographers, 69(2):240–249.

92

Muller, J.-C. (1980). Comment in reply. Annals of the Association of American
Geographers, 70(1):107–108.

Murray, A. T. and Shyy, T.-K. (2000). Integrating attribute and space characteristics in
choropleth display and spatial data mining. International Journal of Geographic
Information Science, 14(7):649–667.

Nah, F. F.-H. (2004). A study on tolerable waiting time: How long are web users willing
to wait? Behavior & Information Technology, 23(3):153–163.

Neumann, A. (2012). Web mapping and web cartography. In Shekhar, S. and Xiong, H.,
editors, Springer handbook of geographic information, chapter 14, pages 273–287.
Springer, Berlin Heidelberg.

Neumann, A. and Winter, A. M. (2005). Web mapping with Scalable Vector Graphics
(SVG): Delivering the promise of high quality and interactive web maps. In Peterson,
M. P., editor, Maps and the Internet, chapter 12, pages 197–220. Elsevier Ltd., Oxford,
GB.

OGC (2004). OpenGIS web feature service implementation specification. Technical
report, OGC.

OGC (2006a). An introduction to GeoRSS: A standards-based approach for geoenabling
RSS feeds. Technical report, OGC.

OGC (2006b). OpenGIS web map server implementation specification. Technical report,
OGC.

OGC (2006c). Symbology encoding implementation specification. Technical report,
OGC.

OGC (2007a). OpenGIS Geography Markup Language (GML) encoding standard.
Technical report, OGC.

OGC (2007b). Styled layer descriptor profile of the web map service implementation
specification. Technical report, OGC.

OGC (2008). OGC KML. Technical report, OGC.

OGC (2010). OGC WCS 2.0 interface standard–core. Technical report, OGC.

Olson, J. M. and Brewer, C. A. (1997). An evaluation of color selections to accommodate
map users with color-vision impairments. Annals of the Association of American
Geographers, 87(1):103–134.

O’Reilly, T. (2005). What is Web 2.0? Design patterns and business models for the next
generation of software. http://oreilly.com/web2/archive/what-is-web-20.html.

Pavlicko, P. and Peterson, M. P. (2005). Large-scale topographic web maps using Scalable
Vector Graphics. Cartographic Perspectives, Winter(50):34–45.

93

http://oreilly.com/web2/archive/what-is-web-20.html

Peng, Z. R. and Tsou, M. (2003). Internet GIS: Distributed geographic information
services for the Internet and wireless networks. John Wiley & Sons, Hoboken, New
Jersey.

Peng, Z. R. and Zhang, C. (2004). The roles of Geography Markup Language (GML),
Scalable Vector Graphics (SVG), and Web Feature Service (WFS) specifications in the
development of Internet Geographic Information Systems. Journal of Geographical
Systems, 6:95–116.

Peterson, M. P., editor (2012a). Online maps with APIs and WebServices. Springer, Berlin
and Heidelberg.

Peterson, M. P. (2012b). The tile-based mapping transition in cartography. In Zentai, L.
and Nunez, J. R., editors, Maps for the future, Lecture Notes in Geoinformation and
Cartography 5, chapter 13, pages 151–163. Springer-Verlag Berlin Heidelberg.

Plewe, B. (2007). Web cartography in the United States. Cartography and Geographic
Information Science, 34(2):133–136.

Quinn, S. and Gahegan, M. (2010). A predictive model for frequently viewed tiles in a
web map. Transactions in GIS, 14(2):193–216.

Ramos, J. A. S., Esperança, C., and Clua, E. W. G. (2009). A progressive vector map
browser for the Web. Journal of the Brazillian Computer Society, 15(1):35–48.

Rey, S. J. and Anselin, L. (2007). PySAL: A Python library for spatial analytical methods.
The Review of Regional Studies, 37:5–27.

Rinner, C., Moldofsky, B., Cusimano, M. D., Marshall, S., and Hernandez, T. (2011).
Exploring the boundaries of web map services: the example of the Online Injury Atlas
for Ontario. Transactions in GIS, 15(2):129–145.

Robinson, A. H. (1982). Early thematic mapping in the history of cartography. University
of Chicago, Chicago, US.

Rohrer, R. M. and Swing, E. (1997). Web-based information visualization. IEEE
Computer Graphics and Applications, 17(4):52–59.

Sample, J. T. and Ioup, E. (2010). Tile-based geospatial information systems: Principles
and practices. Springer Science-Business Media, LLC, New York, Dordrecht,
Heidelberg, London.

Schmidt, C. R. and Dev, B. (2008). A scalable tile map service for distributing dynamic
choropleth maps. Working paper, GeoDa Center for Geospatial Analysis and
Computation, Arizona State University, USA.

Schmidt, M. and Weiser, P. (2012). Web mapping services: development and trends. In
Peterson, M. P., editor, Online maps with APIs and WebServices, chapter 2, pages
13–21. Springer, New York, Dordrecht, Heidelberg, London.

94

Schultz, R. B., Kerski, J. J., and Patterson, T. C. (2008). The use of virtual globes as a
spatial teaching tool with suggestions for metadata standards. Journal of Geography,
107:27–34.

Slocum, T. A., McMaster, R. B., Kessler, F. C., and Howard, H. H. (2009). Thematic
cartography and geovisualization. Prentice Hall, Upper Saddle River, NJ, third edition.

Steiner, E., MacEachren, A. M., and Guo, D. (2002). Developing lightweight, data-driven
exploratory geo-visualization tools for the web. In Richardson, D. E. and Oosterom,
P. V., editors, Advances in Spatial Data Handling: Proceedings of 10th International
Symposium on Spatial Data Handling, pages 487–500, Berlin, Germany.
Springer-Verlag.

Steiniger, S. and Hunter, A. J. (2013). The 2012 free and open source GIS software map -
a guide to facilitate research, development, and adoption. Computers, Environment and
Urban Systems, 39:136–150.

Stewart, J. and Kennelly, P. J. (2010). Illuminated choropleth maps. Annals of the
Association of American Geographers, 100(3):513–534.

Takatsuka, M. and Gahegan, M. (2001). Sharing exploratory geospatial analysis and
decision making using GeoVISTA studio: From a desktop to the Web. Journal of
Geographic Information and Decision Analysis, 5(2):129–139.

Tobler, W. R. (1973). Choropleth maps without class intervals? Geographical Analysis,
5:262–265.

Traun, C. and Loidi, M. (2012). Autocorrelation-based regioclassification - a
self-calibrating classification approach for choropleth maps explicitly considering
spatial autocorrelation. International Journal of Geographic Information Science,
26(5):923–939.

Tsou, M. (2004). Integrating web-based GIS and image processing tools for
environmental monitoring and natural resource management. Journal of Geographical
Systems, 6:155–174.

Tsou, M. (2005). Recent development of Internet GIS. GISdevelopment.net.

Tsou, M. and Buttenfield, B. P. (2002). A dynamic architecture for distributing geographic
information services. Transactions in GIS, 6(4):355–381.

Tsou, M.-H. (2011). Revisiting web cartography in the United States: the rise of
user-centered design. Cartography and Geographic Information Science,
38(3):250–257.

Tsoulos, L. (2005). System design considerations for the development of an electronic
statistical atlas. Cartography and Geographic Information Science, 32(3):181–194.

Tu, S. and Abdelguerfi, M. (2006). Web services for geographic information systems.
IEEE Internet Computing, September/October:13–15.

95

Tu, S., Flanagin, M., Wu, Y., Abdelguerfi, M., Normand, E., Mahadevan, V., Ratcliff, J.,
and Shaw, K. (2004). Design strategies to improve performance of GIS web services.
In ITCC ’04: Proceedings of the International Conference on Information Technology:
Coding and Computing (ITCC’04) Volume 2, volume 2, pages 444–448. IEEE
Computer Society.

Tu, S. R., He, X., Li, X., and Ratcliff, J. (2001). A systematic approach to reduction of
user-perceived response time for GIS web services. In Proceedings of the Ninth ACM
International Symposium on Advances in Geographic Information Systems, pages
47–52, Atlanta, Georgia.

Turner, A. J. (2006). Introduction to neogeography. O’Reilly Media, Sebastopol, CA.

W3C (2003). Portable network graphics (PNG) specification (second edition).
http://www.w3.org/TR/PNG/.

W3C (2011). HTML5: A vocabulary and associated APIs for HTML and XHTML.
http://www.w3.org/TR/html5/.

Waller, L. A. and Gotway, C. A. (2004). Applied spatial statistics for public health data.
Wiley, Hoboken, New Jersey.

Wang, F. (2006). Quantitative methods and applications in GIS. CRC Press, Boca Raton,
Fl.

Wei, Z.-K., Oh, Y.-H., Lee, J.-D., Kim, J.-H., Park, D.-S., Lee, Y.-G., and Base, H.-H.
(1999). Efficient spatial data transmission in web-based GIS. In Proceedings of the
Second International Workshop on Web Information and Data Management, pages
38–42, Kansas City, Missouri.

Yang, B. S., Purves, R., and Weibel, R. (2007). Efficient transmission of vector data over
the Internet. International Journal of Geographic Information Science, 21(2):215–237.

Yang, C., Wong, D., Yang, R., Kafatos, M., and Li, Q. (2005). Performance-improving
techniques in web-based GIS. International Journal of Geographical Information
Science, 19(3):319–342.

Yao, X. and Zou, L. (2008). Interoperable Internet mapping–An open source approach.
Cartography and Geographic Information Science, 35(4):279–293.

Yau, N. (2011). Visualizing this: The FlowingData guide to design, visualization, and
statistics. John Wiley & Sons, Indianapolis, IN.

Zaslavsky, I. (2000). A new technology for interactive online mapping with vector
markup and XML. Cartographic Perspectives, Fall(37):12–24.

Zhang, C. and Li, W. (2005). The roles of web feature and web map services in real-time
geospatial data sharing for time-critical applications. Cartography and Geographic
Information Science, 32(4):269–283.

96

http://www.w3.org/TR/PNG/
http://www.w3.org/TR/html5/

Zhao, H. and Shneiderman, B. (2005). Colour-coded pixel-based highly interactive web
mapping for georeferenced data exploration. International Journal of Geographical
Information Science, 19(4):413–428.

Zheng, Y., Xie, X., and Ma, W.-Y. (2010). GeoLife: a collaborative social networking
service among user, location, and trajectory. IEEE Data Engineering Bulletin,
32(2):32–40.

Zucker, D. F. (2007). What does AJAX mean for you? Interactions, 14(5):10–12.

97

APPENDIX A

SOURCE CODE FOR TEST APPLICATIONS

98

A.1 Common Components

A.1.1 Base web page
1 <!DOCTYPE html PUBLIC ” − / /W3C / / DTD XHTML 1 . 0 T r a n s i t i o n a l / / EN” ”
2 h t t p : / / www. w3 . org / TR / xhtml1 /DTD/ xhtml1− t r a n s i t i o n a l . d t d ”>
3 <html xmlns=” h t t p : / / www. w3 . org / 1 9 9 9 / xhtml ” xml : lang =” en ” lang =” en ”>
4 <head>
5 < t i t l e>T i l e Mapping S c a l a b i l i t y T e s t< / t i t l e>
6 <meta h t t p −e q u i v =” Conten t−Type ” c o n t e n t =” t e x t / h tml ; c h a r s e t = u t f −8” />
7 <s t y l e type =” t e x t / c s s ”>
8 @import u r l (” example . c s s ”) ;
9 @import u r l (” l i b / c o l o r b r e w e r / c o l o r b r e w e r . c s s ”) ;

10 @import u r l (” r a t emap . c s s ”) ;
11 html , body { h e i g h t : 100%; }
12 body { margin : 0px ; }
13 < / s t y l e>
14 <s c r i p t type =” t e x t / j a v a s c r i p t ” s r c =” l i b / j q u e r y / j q u e r y . min . j s ”>< / s c r i p t>
15 <s c r i p t type =” t e x t / j a v a s c r i p t ” s r c =” l i b / p r o t o v i s / p r o t o d a t a . min . j s ? 3 . 2 ”>< /

s c r i p t>
16 <s c r i p t type =” t e x t / j a v a s c r i p t ” s r c =” l i b / c o l o r b r e w e r / c o l o r b r e w e r . j s ”>< /

s c r i p t>
17 <s c r i p t type =” t e x t / j a v a s c r i p t ” s r c =” polymaps . j s ”>< / s c r i p t>
18 <s c r i p t type =” t e x t / j a v a s c r i p t ” s r c =” ra t emap . j s ”>< / s c r i p t>
19 <s c r i p t type =” t e x t / j a v a s c r i p t ” s r c =” e v e n t o b s e r v e r . j s ”>< / s c r i p t>
20 <s c r i p t type =” t e x t / j a v a s c r i p t ” s r c =” m a p c l a s s i f i e r . j s ”>< / s c r i p t>
21 <s c r i p t type =” t e x t / j a v a s c r i p t ” s r c =” t e s t e r . j s ”>< / s c r i p t>
22 <s c r i p t type =” t e x t / j a v a s c r i p t ”>
23 f u n c t i o n h i d e S e l e c t o r s () {
24 $ (’ # c l a s s i f i c a t i o n s e l e c t o r ’) . h i d e () ;
25 $ (’ # n o c l a s s s e l e c t o r ’) . h i d e () ;
26 $ (’ # c o l o r s c h e m e s e l e c t o r ’) . h i d e () ;
27 }
28 < / s c r i p t>
29 < / head>
30 <body onload=” h i d e S e l e c t o r s () ; ”>
31 <div c l a s s =” t e s t e r ”>
32 <h2>S c a l a b i l i t y T e s t o f V ec to r T i l e Mapping A p p l i c a t i o n< / h2>
33 <form name=” o p t i o n s ”>
34 < l a b e l>T e s t O p e r a t i o n< / l a b e l>
35 <s e l e c t name=” t e s t o p e r a t i o n ”>
36 <op t ion va lue =” op 1 ”>Draw a c h o r o p l e t h map of raw r a t e s< / op t ion>
37 <op t ion va lue =” op 2 ”>Draw two c h o r o p l e t h maps o f raw and
38 smoothed r a t e s s i m u l t a n e s o u l y< / op t ion>
39 <op t ion va lue =” op 3 1 ”>Change map c l a s s i f i c a t i o n< / op t ion>
40 <op t ion va lue =” op 3 2 ”>F i l t e r map by p r o b a b i l i t y< / op t ion>
41 <op t ion va lue =” op 4 1 ”>Zoom i n 3x< / op t ion>
42 <op t ion va lue =” op 4 2 ”>Zoom o u t 3x< / op t ion>
43 <op t ion va lue =” op 4 3 ”>Pan 3x< / op t ion>
44 <op t ion va lue =” op 5 1 ”>H i g h l i g h t a po lygon i n a s i n g l e map< / op t ion>
45 <op t ion va lue =” op 5 2 ” s e l e c t e d =” s e l e c t e d ”>Map l i n k i n g wi th two maps< /

op t ion>
46 < / s e l e c t>
47

48 < l a b e l>Data< / l a b e l>
49 <s e l e c t name=” d a t a ”>
50 <op t ion va lue =” c ou n t y ”>U. S . C o u n t i e s< / op t ion>
51 <op t ion va lue =” pcsa ”>U. S . P r imary Care S e r v i c e Areas (PCSAs)< / op t ion>
52 <op t ion va lue =” sd ”>U. S . Schoo l D i s t r i c t s< / op t io n>
53 <op t ion va lue =” z i p ”>USPS Zip Code Areas< / op t ion>
54 <op t ion va lue =” t r a c t ” s e l e c t e d =” s e l e c t e d ”>U. S . Census T r a c t s< / op t ion>
55 < / s e l e c t>
56

57 < l a b e l>Map S i z e< / l a b e l>

99

58 <s e l e c t name=” maps ize ”>
59 <op t ion va lue =” ”>Smal l (400 x200)< / op t ion>
60 <op t ion va lue =” ” s e l e c t e d =” s e l e c t e d ”>Medium (800 x400)< / op t ion>
61 <op t ion va lue =” ”>Large (1200 x600)< / op t ion>
62 <op t ion va lue =” ”>L a r g e r (1600 x800)< / op t ion>
63 < / s e l e c t>
64

65 < l a b e l>Number o f T e s t s< / l a b e l>
66 <input name=” n o t e s t s ” va lue =” 2 ” s i z e =” 3 ” />
67 <a hre f =” # ” o n c l i c k =” s t a r t T e s t () ”>Run T e s t< / a>
68 < / form>
69 < / div>
70 <s e l e c t id =” c l a s s i f i c a t i o n s e l e c t o r ”>
71 <op t ion va lue =” Q u a n t i l e ” s e l e c t e d =” s e l e c t e d ”>Q u a n t i l e< / op t ion>
72 <op t ion va lue =” P e r c e n t i l e ”>P e r c e n t i l e< / op t ion>
73 <op t ion va lue =”Boxmap”>Boxmap< / op t ion>
74 <op t ion va lue =” E q u a l I n t e r v a l ”>Equal I n t e r v a l< / op t ion>
75 < / s e l e c t>
76 <s e l e c t id =” n o c l a s s s e l e c t o r ”>
77 <op t ion va lue =” 2 ”>2< / op t ion>
78 <op t ion va lue =” 3 ”>3< / op t ion>
79 <op t ion va lue =” 4 ”>4< / op t ion>
80 <op t ion va lue =” 5 ” s e l e c t e d =” s e l e c t e d ”>5< / op t ion>
81 <op t ion va lue =” 6 ”>6< / op t ion>
82 <op t ion va lue =” 7 ”>7< / op t ion>
83 <op t ion va lue =” 8 ”>8< / op t ion>
84 <op t ion va lue =” 9 ”>9< / op t ion>
85 <op t ion va lue =” 10 ”>10< / op t ion>
86 < / s e l e c t>
87 <s e l e c t id =” c o l o r s c h e m e s e l e c t o r ”>
88 <op t ion va lue =” Blues ” s e l e c t e d =” s e l e c t e d ”>Blues< / op t ion>
89 <op t ion va lue =” P u r p l e s ”>P u r p l e s< / op t ion>
90 <op t ion va lue =” Greens ”>Greens< / op t ion>
91 <op t ion va lue =” Oranges ”>Oranges< / op t ion>
92 <op t ion va lue =” Reds ”>Reds< / op t ion>
93 <op t ion va lue =” Greys ”>Greys< / op t ion>
94 < / s e l e c t>
95 < / body>
96 < / html>

A.1.2 Map Classifier
1
2 pv . S c a l e . p e r c e n t i l e = f u n c t i o n () {
3
4 var n = −1,
5 j = −1,
6 q = [] ,
7 d = [] ,
8 y = pv . S c a l e . l i n e a r () ;
9

10 f u n c t i o n s c a l e (x) {
11 re turn y (Math . max (0 , Math . min (j , pv . s e a r c h . i n d e x (q , x) − 1)) / j) ;
12 } ;
13
14 s c a l e . s e t n = f u n c t i o n (v) {
15 n = v ;
16 } ;
17
18 s c a l e . g e t n = f u n c t i o n () {
19 re turn n ;
20 } ;
21
22 s c a l e . s e t j = f u n c t i o n (v) {

100

23 j = v ;
24 } ;
25
26 s c a l e . g e t j = f u n c t i o n () {
27 re turn j ;
28 } ;
29
30 s c a l e . s e t q = f u n c t i o n (v) {
31 q = v ;
32 } ;
33
34 s c a l e . g e t q = f u n c t i o n () {
35 re turn q ;
36 } ;
37
38 s c a l e . s e t d = f u n c t i o n (v) {
39 d = v ;
40 } ;
41
42 s c a l e . g e t d = f u n c t i o n () {
43 re turn d ;
44 } ;
45
46 s c a l e . i n t e r v a l s = f u n c t i o n () {
47 q [0] = d [0] ;
48 var p e r c e n t i l e s = [1 , 1 0 , 5 0 , 9 0 , 9 9 , 1 0 0] ;
49 n = p e r c e n t i l e s . l e n g t h ;
50 f o r (var i = 0 ; i < p e r c e n t i l e s . l e n g t h ; i ++){
51 q [i +1] = d [˜ ˜ (p e r c e n t i l e s [i] * 1 . 0 * (d . l e n g t h − 1) / 1 0 0)] ;
52 }
53 j = n − 1 ;
54 re turn t h i s ;
55 } ;
56
57 s c a l e . domain = f u n c t i o n (a r r a y , f) {
58 i f (a rgumen t s . l e n g t h) {
59 d = (a r r a y i n s t a n c e o f Array) ?
60 pv . map (a r r a y , f) : Array . p r o t o t y p e . s l i c e . c a l l (a rgumen t s) ;
61 d . s o r t (pv . n a t u r a l O r d e r) ;
62 s c a l e . i n t e r v a l s () ;
63 re turn t h i s ;
64 }
65 } ;
66
67 s c a l e . r a n g e = f u n c t i o n () {
68 y . r a n g e . a p p l y (y , [0 , j]) ;
69 } ;
70
71 s c a l e . by = f u n c t i o n (f) {
72 f u n c t i o n by () { re turn s c a l e (f . a p p l y (t h i s , a rgumen t s)) ;}
73 f o r (var method in s c a l e) by [method] = s c a l e [method] ;
74 re turn by ;
75 } ;
76
77 s c a l e . domain . a p p l y (s c a l e , a rgumen t s) ;
78 re turn s c a l e ;
79
80 } ;
81
82 pv . S c a l e . e q u a l i n t e r v a l = f u n c t i o n () {
83
84 var s c a l e = pv . S c a l e . p e r c e n t i l e () ;
85
86 s c a l e . i n t e r v a l s = f u n c t i o n (n o c l a s s) {

101

87 i f (n o c l a s s != n u l l)
88 s c a l e . s e t n (n o c l a s s) ;
89 var d = s c a l e . g e t d () ,
90 n = s c a l e . g e t n () ,
91 d max = pv . max (d) ,
92 d min = pv . min (d) ,
93 i n t e r v a l = (d max − d min) * 1 . 0 / n ,
94 bps = pv . r a n g e (d min , d max , i n t e r v a l) ;
95 bps . push (d max) ;
96 s c a l e . s e t q (bps) ;
97 s c a l e . s e t j (bps . l e n g t h − 1) ;
98 re turn t h i s ;
99 } ;

100
101 s c a l e . domain . a p p l y (s c a l e , a rgumen t s) ;
102 re turn s c a l e ;
103
104 } ;
105
106 pv . S c a l e . m a p q u a n t i l e = f u n c t i o n () {
107
108 var s c a l e = pv . S c a l e . p e r c e n t i l e () ;
109
110 s c a l e . i n t e r v a l s = f u n c t i o n (n o c l a s s) {
111 i f (n o c l a s s != n u l l)
112 s c a l e . s e t n (n o c l a s s) ;
113 var q = [] ,
114 n = s c a l e . g e t n () ,
115 d = s c a l e . g e t d () ,
116 w = 1 0 0 . 0 / n ,
117 q u a n t i l e s = pv . r a n g e (0 , 100+w, w) ;
118 i f (q u a n t i l e s [q u a n t i l e s . l e n g t h − 1] > 1 0 0 . 0)
119 q u a n t i l e s [q u a n t i l e s . l e n g t h − 1] = 100 .0
120 f o r (var i = 0 ; i < q u a n t i l e s . l e n g t h ; i ++){
121 q . push (d [˜ ˜ (q u a n t i l e s [i] * 1 . 0 * (d . l e n g t h − 1) / 1 0 0)]) ;
122 }
123
124 s c a l e . s e t q (q) ;
125 s c a l e . s e t j (n − 1) ;
126 re turn t h i s ;
127 } ;
128
129 s c a l e . domain . a p p l y (s c a l e , a rgumen t s) ;
130 re turn s c a l e ;
131
132 } ;
133
134 pv . S c a l e . boxmap = f u n c t i o n () {
135
136 var s c a l e = pv . S c a l e . p e r c e n t i l e () ;
137
138 s c a l e . i n t e r v a l s = f u n c t i o n () {
139 var q = [] ,
140 d = s c a l e . g e t d () ,
141 uq = d [˜ ˜ (7 5 . 0 * (d . l e n g t h − 1) / 1 0 0)] ,
142 l q = d [˜ ˜ (2 5 . 0 * (d . l e n g t h − 1) / 1 0 0)] ,
143 md = pv . median (d) ,
144 ub = uq + 1 . 5 * (uq − l q) ,
145 l b = l q − 1 . 5 * (uq − l q) ;
146 s c a l e . s e t q ([Number . NEGATIVE INFINITY , lb , lq , md , uq , ub , Number .

POSITIVE INFINITY]) ;
147 s c a l e . s e t n (6) ;
148 s c a l e . s e t j (5) ;
149 re turn t h i s ;

102

150 } ;
151
152 s c a l e . domain . a p p l y (s c a l e , a rgumen t s) ;
153 re turn s c a l e ;
154
155 } ;

A.2 Components for raster-based test application

A.2.1 Test tool
1 var r a t e m a p s = {} ;
2 var myEventObserver ;
3 var t e s t R e s u l t s = [] ;
4 var r a t e T i m e s = {"Raw_Map" : [] , "Spatial_Rate_Map" : [] } ;
5 var even tLog = [] ;
6 var r a t e S t a r t T i m e s = {’Raw’ : [] , ’Spatial Rate’ : [] } ;
7 var r a t eEndTimes = {’Raw’ : [] , ’Spatial Rate’ : [] } ;
8 var r a t e T y p e s = [] ;
9 var noPans = 0 ;

10 var renderedMaps = [] ;
11 var proxy = "PROXY-HOST" ;
12 var s e l e c t O b s e r v e r = po . s e l e c t () ;
13 var t i l e s e t = ’’ ;
14 var t e s t f e a t s = n u l l ;
15
16 var c u r r e n t T e s t O p ;
17 var e v e n t H e a d e r s = {
18 0 : ["StartToDisplayBaseTiles" ,"EndToDisplayBaseTiles" ,"StartToGetRates" ,
19 "EndToGetRates" ,"StartToClassify" ,"EndToClassify" ,"StartToRender" ,"

EndToRender"] ,
20 } ;
21 var t i m e H e a d e r s = {
22 0 : ["DisplayBaseTiles" ,"GetRates" ,"ClassifyRates" ,"RenderTiles"] ,
23 3 : ["DisplayBaseTiles" ,"GetRates" ,"ClassifyRates" ,"RenderTiles" ,"GetProbs" ,
24 "FilterRates" ,"CacheClasses" ,"RerenderTiles"] ,
25 4 : ["DisplayBaseTiles" ,"GetRates" ,"ClassifyRates" ,"RenderTiles" ,"ZoomIn" ,
26 "ZoomIn" ,"ZoomIn"] ,
27 6 : ["DisplayBaseTiles" ,"GetRates" ,"ClassifyRates" ,"RenderTiles" ,"Pan" ,"Pan" ,"

Pan"] ,
28 } ;
29 var preZoom ;
30
31 //
32 // test operations
33 //
34 f u n c t i o n drawRateMap (map , da t a , map id) {
35 var sm method = {"Raw_Map" : "Raw" , "Spatial_Rate_Map" : "Spatial Rate" } ;
36 map . i n i t (d a t a . da t a , d a t a . ev t , d a t a . pop , sm method [map id] , d a t a . wgt) ;
37 }
38
39 f u n c t i o n c h a n g e C l a s s i f i c a t i o n (map) {
40 map . i n i t T i m e = (new Date ()) . ge tTime () ;
41 var c l a s s i f i e r = $ (’#’ + map . c o n t a i n e r + ’_clsf’) ;
42 c l a s s i f i e r . v a l ("Percentile") ;
43 c l a s s i f i e r . change () ;
44 }
45
46 f u n c t i o n f i l t e r B y P r o b (map) {
47 map . i n i t T i m e = (new Date ()) . ge tTime () ;
48 var p r o b F i l t e r = $ (’#’ + map . c o n t a i n e r + ’_prob_filter’) ;
49 p r o b F i l t e r . v a l ("0.05") ;
50 p r o b F i l t e r . change () ;
51 }

103

52
53 f u n c t i o n zoomIn3x (map) {
54 map . i n i t T i m e = (new Date ()) . ge tTime () ;
55 even tLog . push (["Raw_Map" , "Starting to zoom in" , map . i n i t T i m e]) ;
56 //console.log((new Date()).getTime());
57 map . map . zoomBy (1) ;
58 }
59
60 f u n c t i o n zoomOut3x (map) {
61 map . i n i t T i m e = (new Date ()) . ge tTime () ;
62 map . map . zoomBy(−1) ;
63 }
64
65 f u n c t i o n pan3x (map) {
66 noPans = 0 ;
67 map . i n i t T i m e = (new Date ()) . ge tTime () ;
68 even tLog . push (["Raw_Map" , "Starting to pan" , map . i n i t T i m e]) ;
69 map . map . panBy ({ x : 2 5 6 , y : 2 5 6}) ;
70 }
71
72 f u n c t i o n c e n t r o i d (c o o r d s) {
73 var a r e a = 0 . 0 ,
74 cx = 0 . 0 ,
75 cy = 0 . 0 ;
76 f o r (var i = 0 ; i < (c o o r d s . l e n g t h − 1) ; i ++){
77 var p1 = c o o r d s [i] ,
78 p2 = c o o r d s [i + 1] ;
79 var a r e a I n c = (p1 [0] * p2 [1] − p2 [0] * p1 [1]) ;
80 a r e a += a r e a I n c ;
81 cx += (p1 [0] + p2 [0]) * a r e a I n c ;
82 cy += (p1 [1] + p2 [1]) * a r e a I n c ;
83 }
84 cx = cx / (3 * a r e a) ;
85 cy = cy / (3 * a r e a) ;
86 re turn { l o n : cx , l a t : cy } ;
87 }
88
89 f u n c t i o n g e t T a r g e t T i l e (t i l e s) {
90 var t i l e K e y s = [] ;
91 f o r (var t i l e in t i l e s) t i l e K e y s . push (t i l e) ;
92 var t a r g e t T i l e = n u l l ;
93 whi le (t a r g e t T i l e == n u l l) {
94 var tKey = t i l e K e y s [Math . f l o o r (t i l e K e y s . l e n g t h *Math . random ())] ;
95 t a r g e t T i l e = t i l e s [tKey] ;
96 }
97 re turn t a r g e t T i l e ;
98 }
99

100 f u n c t i o n g e t T a r g e t F e a t u r e (t i l e s) {
101 var t a r g e t T i l e = g e t T a r g e t T i l e (t i l e s) ;
102 var t a r g e t F e a t = n u l l ;
103 whi le (t a r g e t F e a t == n u l l) {
104 var a F e a t = t a r g e t T i l e [Math . f l o o r (t a r g e t T i l e . l e n g t h *Math . random ())] ;
105 i f (a F e a t && a F e a t . e l e m e n t) t a r g e t F e a t = a F e a t ;
106 }
107 re turn t a r g e t F e a t ;
108 }
109
110 f u n c t i o n ge tFea tForSmal lMap () {
111 var f e a t = [−360 , −360];
112 whi le (! ((f e a t [0] >= −113.578125 && f e a t [0] <= −78.421875) &&
113 (f e a t [1] >= 31.847258664621535 && f e a t [1] <= 45 .49674343466975)))
114 f e a t = t e s t f e a t s . f e a t u r e s [Math . f l o o r (100* Math . random ())] . geomet ry .

c o o r d i n a t e s ;

104

115 re turn f e a t ;
116 }
117
118 f u n c t i o n h i g h l i g h t P o l y I n O n e M a p (map) {
119 var f e a t = t e s t f e a t s . f e a t u r e s [Math . f l o o r (100* Math . random ())] . geomet ry .

c o o r d i n a t e s ;
120 var p o i n t = map . map . l o c a t i o n P o i n t ({ l o n : f e a t [0] , l a t : f e a t [1] }) ;
121 var e v t = document . c r e a t e E v e n t ("MouseEvents") ;
122 e v t . i n i t M o u s e E v e n t ("click" , true , true , window , 0 , 0 , 0 , p o i n t . x , p o i n t . y ,
123 f a l s e , f a l s e , f a l s e , f a l s e , 0 , n u l l) ;
124 map . i n i t T i m e = (new Date ()) . ge tTime () ;
125 map . map . c o n t a i n e r () . d i s p a t c h E v e n t (e v t) ;
126 }
127
128 f u n c t i o n l inkMaps (maps) {
129 var f e a t = t e s t f e a t s . f e a t u r e s [Math . f l o o r (100* Math . random ())] . geomet ry .

c o o r d i n a t e s ;
130 var p o i n t = maps ["Raw_Map"] . map . l o c a t i o n P o i n t ({ l o n : f e a t [0] , l a t : f e a t [1] }) ;
131 var e v t = document . c r e a t e E v e n t ("MouseEvents") ;
132 e v t . i n i t M o u s e E v e n t ("click" , true , true , window , 0 , 0 , 0 , p o i n t . x , p o i n t . y ,
133 f a l s e , f a l s e , f a l s e , f a l s e , 0 , n u l l) ;
134 maps ["Spatial_Rate_Map"] . i n i t T i m e = (new Date ()) . ge tTime () ;
135 maps ["Raw_Map"] . map . c o n t a i n e r () . d i s p a t c h E v e n t (e v t) ;
136 } ;
137
138 //
139 // utility functions
140 //
141 f u n c t i o n debug (l o g T x t) {
142 i f (window . c o n s o l e != u n d e f i n e d) {
143 c o n s o l e . l o g (l o g T x t) ;
144 } e l s e i f (o p e r a) {
145 o p e r a . p o s t E r r o r (l o g T x t) ;
146 }
147 }
148
149 f u n c t i o n avg (r e s u l t s) {
150 var sum = 0 ;
151 f o r (i = 0 ; i < r e s u l t s . l e n g t h ; i ++) {
152 sum += r e s u l t s [i] ;
153 }
154 re turn sum / r e s u l t s . l e n g t h ;
155 }
156
157 f u n c t i o n s l e e p (m i l l i s e c o n d s) {
158 var s t a r t = new Date () . ge tTime () ;
159 whi le (new Date () . ge tTime () < s t a r t + m i l l i s e c o n d s) ;
160 }
161
162 f u n c t i o n des t royMap (map) {
163 var c o n t = $ ("#" + map . c o n t a i n e r) ;
164 i f (c o n t) {
165 c o n t . p r ev () . remove () ;
166 c o n t . n e x t () . remove () ;
167 c o n t . remove () ;
168 }
169 i f (map . c o n t a i n e r in r a t e m a p s) {
170 map . l a y e r . cache . s i z e (0) ;
171 d e l e t e r a t e m a p s [map . c o n t a i n e r] ;
172 }
173 d e l e t e map . c o n t a i n e r ;
174 }
175
176 f u n c t i o n r e s e t E v t O b s e r v e r () {

105

177 myEventObserver = n u l l ;
178 }
179
180 //
181 // evaluation functions
182 //
183 f u n c t i o n s t a r t T e s t () {
184 debug (’test started’) ;
185 var t e s t O p = ge tTes tOp () ;
186 c u r r e n t T e s t O p = t e s t O p ;
187 var d a t a = g e t T e s t D a t a () ;
188 var mapSize = getMapSize () ;
189 var n o T e s t s = g e t N o T e s t s () ;
190 se tupAndRunTes t (t e s tOp , mapSize , da t a , n o T e s t s) ;
191 }
192
193 f u n c t i o n se tupAndRunTes t (t e s tOp , mapSize , da t a , n o T e s t s) {
194 t e s t R e s u l t s = [] ;
195 p r e p a r e T e s t (t e s tOp , mapSize , da t a , n o T e s t s) ;
196 p r e p a r e T e s t R u n (t e s tOp , mapSize , d a t a) ;
197 i f (t e s t O p < 2) r u n T e s t (t e s tOp , d a t a) ;
198 }
199
200 f u n c t i o n a d d R e s u l t 0 (e d a t a) {
201 t e s t R e s u l t s . push (p a r s e F l o a t (e d a t a [2]) − r a t e m a p s ["Raw_Map"] . i n i t T i m e) ;
202 c o n s o l e . l o g (’time diff:’ + r a t e m a p s ["Raw_Map"] . i n i t T i m e + "-" + e d a t a [2] +

"=" +
203 t e s t R e s u l t s [t e s t R e s u l t s . l e n g t h −1]) ;
204 }
205
206 f u n c t i o n a d d R e s u l t 1 (e d a t a) {
207 a d d R e s u l t 0 (e d a t a) ;
208 }
209
210 f u n c t i o n a d d R e s u l t 2 (e d a t a) {
211 t e s t R e s u l t s . push (p a r s e F l o a t (e d a t a [2]) − r a t e m a p s ["Spatial_Rate_Map"] .

i n i t T i m e) ;
212 c o n s o l e . l o g (’time diff:’ + r a t e m a p s ["Spatial_Rate_Map"] . i n i t T i m e + "-" +

e d a t a [2] +
213 "=" + t e s t R e s u l t s [t e s t R e s u l t s . l e n g t h −1]) ;
214 }
215
216 f u n c t i o n n e x t T e s t 0 (noTes t s , t e s tOp , mapSize , da t a , srcMap) {
217 i f (t e s t R e s u l t s . l e n g t h < n o T e s t s) {
218 window . s e t T i m e o u t (f u n c t i o n () {
219 p r e p a r e T e s t R u n (t e s tOp , mapSize , d a t a) ;
220 r u n T e s t (t e s tOp , d a t a) ;
221 } , 2) ;
222 }
223 e l s e i f (t e s t R e s u l t s . l e n g t h == n o T e s t s && c u r r e n t T e s t O p == 1) {
224 debug ("Avg time: " + (avg (t e s t R e s u l t s) + 2 . 0) + " ms") ;
225 var eHeader = e v e n t H e a d e r s [c u r r e n t T e s t O p − 1] ;
226 var t H e a d e r = t i m e H e a d e r s [c u r r e n t T e s t O p − 1] ;
227 var eHeaderLen = eHeader . l e n g t h * 2 ;
228 var tHeaderLen = t H e a d e r . l e n g t h ;
229 debug ("Response times") ;
230 f o r (var i = 0 ; i < t e s t R e s u l t s . l e n g t h ; i ++) debug (t e s t R e s u l t s [i]) ;
231 f o r (var i = 0 ; i < t e s t R e s u l t s . l e n g t h ; i ++) {
232 debug ("Test" + i) ;
233 var l = eventLog . s l i c e (i * eHeaderLen , (i +1) * eHeaderLen) ;
234 f o r (var j = 0 ; j < l . l e n g t h ; j ++){
235 debug (l [j] . j o i n (",")) ;
236 }
237 }

106

238 debug ("Raw_Map") ;
239 debug (t H e a d e r . j o i n (",")) ;
240 f o r (var i = 0 ; i < t e s t R e s u l t s . l e n g t h ; i ++) {
241 var l = r a t e T i m e s ["Raw_Map"] . s l i c e (i * tHeaderLen , (i +1) * tHeaderLen) ;
242 debug (l . j o i n (",")) ;
243 }
244 debug ("Spatial_Rate_Map") ;
245 debug (t H e a d e r . j o i n (",")) ;
246 f o r (var i = 0 ; i < t e s t R e s u l t s . l e n g t h ; i ++) {
247 var l = r a t e T i m e s ["Spatial_Rate_Map"] . s l i c e (i * tHeaderLen , (i +1) *

tHeaderLen) ;
248 debug (l . j o i n (",")) ;
249 }
250 }
251 e l s e i f (t e s t R e s u l t s . l e n g t h == n o T e s t s) {
252 debug ("Avg time: " + (avg (t e s t R e s u l t s) + 2 . 0) + " ms") ;
253 var eHeader = e v e n t H e a d e r s [c u r r e n t T e s t O p] ;
254 var t H e a d e r = t i m e H e a d e r s [c u r r e n t T e s t O p] ;
255 var eHeaderLen = eHeader . l e n g t h ;
256 var tHeaderLen = t H e a d e r . l e n g t h ;
257 debug ("Response times") ;
258 f o r (var i = 0 ; i < t e s t R e s u l t s . l e n g t h ; i ++) debug (t e s t R e s u l t s [i]) ;
259 f o r (var i = 0 ; i < t e s t R e s u l t s . l e n g t h ; i ++) {
260 debug ("Test" + i) ;
261 var l = eventLog . s l i c e (i * eHeaderLen , (i +1) * eHeaderLen) ;
262 f o r (var j = 0 ; j < l . l e n g t h ; j ++){
263 debug (l [j] . j o i n (",")) ;
264 }
265 }
266 debug (t H e a d e r . j o i n (",")) ;
267 f o r (var i = 0 ; i < t e s t R e s u l t s . l e n g t h ; i ++) {
268 var l = r a t e T i m e s ["Raw_Map"] . s l i c e (i * tHeaderLen , (i +1) * tHeaderLen) ;
269 debug (l . j o i n (",")) ;
270 }
271 }
272 }
273
274 f u n c t i o n n e x t T e s t 1 (noTes t s , t e s tOp , mapSize , da t a , srcMap) {
275 c o n s o l e . l o g (’nextTest1’) ;
276 n e x t T e s t 0 (noTes t s , t e s tOp , mapSize , da t a , srcMap) ;
277 }
278
279 f u n c t i o n n e x t T e s t 2 (noTes t s , t e s tOp , mapSize , da t a , srcMap) {
280 c o n s o l e . l o g (’nextTest2’) ;
281 i f (t e s t R e s u l t s . l e n g t h < n o T e s t s) {
282 window . s e t T i m e o u t (f u n c t i o n () {
283 p r e p a r e T e s t R u n (t e s tOp , mapSize , d a t a) ;
284 } , 1) ;
285 }
286 e l s e i f (t e s t R e s u l t s . l e n g t h == n o T e s t s && c u r r e n t T e s t O p == 3) {
287 debug ("Avg time: " + (avg (t e s t R e s u l t s) + 2 . 0) + " ms") ;
288 var t H e a d e r = t i m e H e a d e r s [c u r r e n t T e s t O p] ;
289 var eHeaderLen = 1 5 ;
290 var tHeaderLen = t H e a d e r . l e n g t h ;
291 debug ("Response times") ;
292 f o r (var i = 0 ; i < t e s t R e s u l t s . l e n g t h ; i ++) debug (t e s t R e s u l t s [i]) ;
293 f o r (var i = 0 ; i < t e s t R e s u l t s . l e n g t h ; i ++) {
294 debug ("Test" + i) ;
295 var l = eventLog . s l i c e (i * eHeaderLen , (i +1) * eHeaderLen) ;
296 f o r (var j = 0 ; j < l . l e n g t h ; j ++){
297 debug (l [j] . j o i n (",")) ;
298 }
299 }
300 debug (t H e a d e r . j o i n (",")) ;

107

301 f o r (var i = 0 ; i < t e s t R e s u l t s . l e n g t h ; i ++) {
302 var l = r a t e T i m e s ["Raw_Map"] . s l i c e (i * tHeaderLen , (i +1) * tHeaderLen) ;
303 debug (l . j o i n (",")) ;
304 }
305 }
306 e l s e i f (t e s t R e s u l t s . l e n g t h == n o T e s t s) {
307 var a d d i t i o n = 2 ;
308 i f (t e s t O p == 4 | | t e s t O p == 5 | | t e s t O p == 6) a d d i t i o n = (4−1000) ;
309 e l s e i f (t e s t O p == 7 | | t e s t O p == 8) a d d i t i o n = 0 ;
310 debug ("Avg time: " + (avg (t e s t R e s u l t s) + a d d i t i o n) + " ms") ;
311 debug ("Response times") ;
312 f o r (var i = 0 ; i < t e s t R e s u l t s . l e n g t h ; i ++) debug (t e s t R e s u l t s [i] +

a d d i t i o n) ;
313 var t H e a d e r = t i m e H e a d e r s [c u r r e n t T e s t O p] ;
314 var eHeaderLen = 1 3 ;
315 var tHeaderLen = t H e a d e r . l e n g t h ;
316 f o r (var i = 0 ; i < t e s t R e s u l t s . l e n g t h ; i ++) {
317 debug ("Test" + i) ;
318 var l = eventLog . s l i c e (i * eHeaderLen , (i +1) * eHeaderLen) ;
319 f o r (var j = 0 ; j < l . l e n g t h ; j ++){
320 debug (l [j] . j o i n (",")) ;
321 }
322 }
323 debug (t H e a d e r . j o i n (",")) ;
324 f o r (var i = 0 ; i < t e s t R e s u l t s . l e n g t h ; i ++) {
325 var l = r a t e T i m e s ["Raw_Map"] . s l i c e (i * tHeaderLen , (i +1) * tHeaderLen) ;
326 debug (l . j o i n (",")) ;
327 }
328 }
329 }
330
331 f u n c t i o n p r e p a r e T e s t (t e s tOp , mapSize , da t a , n o T e s t s) {
332 var a d d R e s u l t = {0 : addResu l t 0 , 1 : a d d R e s u l t 1 } ;
333 var r u n N e x t T e s t = {0 : n e x t T e s t 0 , 1 : n e x t T e s t 1 , 2 : n e x t T e s t 2 } ;
334 var runTes tOp2 3 = f u n c t i o n (e v t D a t a) {
335 c o n s o l e . l o g (e v t D a t a) ;
336 var e d a t a = e v t D a t a . s p l i t (’/’) ;
337 a d d R e s u l t 0 (e d a t a) ;
338 var pMap = r a t e m a p s ["Raw_Map"] ;
339 $. a j a x (
340 {
341 u r l : p roxy + ’/tileservice/raster/service_proxy/reset’ ,
342 d a t a : { c l i d : pMap . c l a s s i f i c a t i o n i i d , c s i d : pMap . c o l o r s c h e m e i d

} ,
343 t y p e : ’POST’ ,
344 da taType : ’jsonp’ ,
345 s u c c e s s : f u n c t i o n (r e s , s t a t , xhr) {
346 i f (r e s . s u c c e s s) n e x t T e s t 2 (noTes t s , t e s tOp , mapSize , d a t a) ;
347 }
348 }
349) ;
350 } ;
351 var runTes tOp7 = f u n c t i o n (e v t D a t a) {
352 c o n s o l e . l o g (e v t D a t a) ;
353 var e d a t a = e v t D a t a . s p l i t (’/’) ;
354 a d d R e s u l t 0 (e d a t a) ;
355 var pMap = r a t e m a p s ["Raw_Map"] ;
356 window . s e t T i m e o u t (f u n c t i o n () { n e x t T e s t 2 (noTes t s , t e s tOp , mapSize , d a t a)

;} , 500) ;
357 } ;
358 var runTes tOp8 = f u n c t i o n (e v t D a t a) {
359 c o n s o l e . l o g (e v t D a t a) ;
360 var e d a t a = e v t D a t a . s p l i t (’/’) ;
361 a d d R e s u l t 2 (e d a t a) ;

108

362 var pMap = r a t e m a p s ["Spatial_Rate_Map"] ;
363 window . s e t T i m e o u t (f u n c t i o n () { n e x t T e s t 2 (noTes t s , t e s tOp , mapSize , d a t a)

;} , 500) ;
364 } ;
365 i f (myEventObserver == n u l l) myEventObserver = new MessageEven tHand le r () ;
366 i f (t e s t O p == 0) {
367 myEventObserver . a d d E v e n t L i s t e n e r ("layerRendered" , f u n c t i o n (e v t D a t a) {
368 c o n s o l e . l o g (e v t D a t a) ;
369 var e d a t a = e v t D a t a . s p l i t (’/’) ;
370 a d d R e s u l t [t e s t O p] (e d a t a) ;
371 $. a j a x (
372 {
373 u r l : p roxy + ’/tileservice/raster/service_proxy/reset’ ,
374 d a t a : { c l i d : r a t e m a p s ["Raw_Map"] . c l a s s i f i c a t i o n i d ,
375 c s i d : r a t e m a p s ["Raw_Map"] . c o l o r s c h e m e i d } ,
376 t y p e : ’POST’ ,
377 da taType : ’jsonp’ ,
378 s u c c e s s : f u n c t i o n (r e s , s t a t , xhr) {
379 i f (r e s . s u c c e s s == ’true’)
380 r u n N e x t T e s t [t e s t O p] (noTes t s , t e s tOp , mapSize , da t a ,

e d a t a [1]) ;
381 }
382 }
383) ;
384 }) ;
385 myEventObserver . a d d E v e n t L i s t e n e r ("loadEnd" , f u n c t i o n (e v t D a t a) {
386 c o n s o l e . l o g (e v t D a t a) ;
387 var e d a t a = e v t D a t a . s p l i t (’/’) ;
388 var loadEndTime = p a r s e I n t (e d a t a [2]) ;
389 even tLog . push ([e d a t a [1] , "EndBaseTileDisplay" , loadEndTime])
390 b a s e t i l e d i s p l a y = loadEndTime − r a t e m a p s ["Raw_Map"] . i n i t T i m e ;
391 r a t e T i m e s ["Raw_Map"] . push (b a s e t i l e d i s p l a y) ;
392 c o n s o l e . l o g (’base tile display (t1-t0):’ + b a s e t i l e d i s p l a y) ;
393 r a t e m a p s ["Raw_Map"] . s t a r t G e t t i n g R a t e s () ;
394 }) ;
395 }
396 e l s e i f (t e s t O p == 1) {
397 myEventObserver . a d d E v e n t L i s t e n e r ("layerRendered" , f u n c t i o n (e v t D a t a) {
398 c o n s o l e . l o g (e v t D a t a) ;
399 var e d a t a = e v t D a t a . s p l i t (’/’) ;
400 renderedMaps . push (e d a t a [1]) ;
401 i f (renderedMaps . l e n g t h == 2) {
402 a d d R e s u l t [t e s t O p] (e d a t a) ;
403 var q s d a t a = {} ;
404 q s d a t a ["cl_id"] = r a t e m a p s ["Raw_Map"] . c l a s s i f i c a t i o n i d + ","

+
405 r a t e m a p s ["Spatial_Rate_Map"] . c l a s s i f i c a t i o n i d ;
406 q s d a t a ["cs_id"] = r a t e m a p s ["Raw_Map"] . c o l o r s c h e m e i d + "," +
407 r a t e m a p s ["Spatial_Rate_Map"] . c o l o r s c h e m e i d ;
408 $. a j a x (
409 {
410 u r l : p roxy + ’/tileservice/raster/service_proxy/reset’ ,
411 d a t a : q s d a t a ,
412 t y p e : ’POST’ ,
413 da taType : ’jsonp’ ,
414 s u c c e s s : f u n c t i o n (r e s , s t a t , xhr) {
415 i f (r e s . s u c c e s s == ’true’)
416 r u n N e x t T e s t [t e s t O p] (noTes t s , t e s tOp , mapSize ,

da t a ,
417 e d a t a [1]) ;
418 }
419 }
420) ;
421 }

109

422 }) ;
423 myEventObserver . a d d E v e n t L i s t e n e r ("loadEnd" , f u n c t i o n (e v t D a t a) {
424 c o n s o l e . l o g (e v t D a t a) ;
425 var e d a t a = e v t D a t a . s p l i t (’/’) ;
426 var map type = e d a t a [1] ;
427 var loadEndTime = p a r s e I n t (e d a t a [2]) ;
428 even tLog . push ([e d a t a [1] , "EndBaseTileDisplay" , loadEndTime])
429 b a s e t i l e d i s p l a y = loadEndTime − r a t e m a p s [e d a t a [1]] . i n i t T i m e ;
430 r a t e T i m e s [e d a t a [1]] . push (b a s e t i l e d i s p l a y) ;
431 c o n s o l e . l o g (e d a t a [1] + ’:base tile display (t1-t0):’ +

b a s e t i l e d i s p l a y) ;
432 r a t e m a p s [e d a t a [1]] . s t a r t G e t t i n g R a t e s () ;
433 }) ;
434 }
435 e l s e i f (t e s t O p >= 2 && t e s t O p <= 8) {
436 i f (t e s t O p != 4 && t e s t O p != 5)
437 myEventObserver . a d d E v e n t L i s t e n e r ("loadEnd" , f u n c t i o n (e v t D a t a) {
438 c o n s o l e . l o g (e v t D a t a) ;
439 var e d a t a = e v t D a t a . s p l i t (’/’) ;
440 var loadEndTime = p a r s e I n t (e d a t a [2]) ;
441 even tLog . push ([e d a t a [1] , "EndBaseTileDisplay" , loadEndTime])
442 b a s e t i l e d i s p l a y = loadEndTime − r a t e m a p s [e d a t a [1]] . i n i t T i m e ;
443 r a t e T i m e s [e d a t a [1]] . push (b a s e t i l e d i s p l a y) ;
444 c o n s o l e . l o g (’base tile display (t1-t0):’ + b a s e t i l e d i s p l a y) ;
445 r a t e m a p s [e d a t a [1]] . s t a r t G e t t i n g R a t e s () ;
446 }) ;
447
448 myEventObserver . a d d E v e n t L i s t e n e r ("readyForTest" , f u n c t i o n (e v t D a t a) {
449 c o n s o l e . l o g (e v t D a t a) ;
450 var e d a t a = e v t D a t a . s p l i t (’/’) ;
451 r u n T e s t (p a r s e I n t (e d a t a [1]) , d a t a) ;
452 }) ;
453
454 i f (t e s t O p == 2 | | t e s t O p == 3 | | t e s t O p == 7 | | t e s t O p == 8) {
455 i f (t e s t O p != 8) {
456 myEventObserver . a d d E v e n t L i s t e n e r ("layerRendered" , f u n c t i o n (

e v t D a t a) {
457 c o n s o l e . l o g (e v t D a t a) ;
458 window . s e t T i m e o u t (f u n c t i o n () {
459 window . pos tMessage ("evt://readyForTest/" + S t r i n g (t e s t O p

) , "*") ;
460 } , 5) ;
461 }) ;
462 }
463 e l s e
464 myEventObserver . a d d E v e n t L i s t e n e r ("layerRendered" , f u n c t i o n (

e v t D a t a) {
465 c o n s o l e . l o g (e v t D a t a) ;
466 var e d a t a = e v t D a t a . s p l i t (’/’) ;
467 renderedMaps . push (e d a t a [1]) ;
468 i f (renderedMaps . l e n g t h == 2)
469 window . pos tMessage ("evt://readyForTest/" + S t r i n g (t e s t O p

) , "*") ;
470 }) ;
471 i f (t e s t O p == 2)
472 myEventObserver . a d d E v e n t L i s t e n e r ("classificationUpdated" ,

r unTes tOp2 3) ;
473 e l s e i f (t e s t O p == 3)
474 myEventObserver . a d d E v e n t L i s t e n e r ("filteredByProb" , r unTes tOp2 3)

;
475 e l s e i f (t e s t O p == 7)
476 myEventObserver . a d d E v e n t L i s t e n e r ("featHighlighted" , runTes tOp7) ;
477 e l s e i f (t e s t O p == 8)

110

478 myEventObserver . a d d E v e n t L i s t e n e r ("featHighlighted" , f u n c t i o n (
e v t D a t a) {

479 c o n s o l e . l o g (e v t D a t a) ;
480 var e d a t a = e v t D a t a . s p l i t (’/’) ;
481 i f (e d a t a [1] == "Spatial_Rate_Map")
482 runTes tOp8 (e v t D a t a) ;
483 }) ;
484 }
485 e l s e i f (t e s t O p == 4 | | t e s t O p == 5) {
486 var z o o m I n t e r v a l = t e s t O p == 5 ? −1: 1 ;
487 var evtName = t e s t O p == 5? ’zoomOut3x’ : ’zoomIn3x’ ;
488 var goalZ = t e s t O p == 5? 4 : 7 ;
489 myEventObserver . a d d E v e n t L i s t e n e r ("layerRendered" , f u n c t i o n (e v t D a t a) {
490 c o n s o l e . l o g (e v t D a t a) ;
491 c o n s o l e . l o g ("zoom level:" + r a t e m a p s ["Raw_Map"] . map . zoom ()) ;
492 preZoom = (new Date ()) . ge tTime () ;
493 myEventObserver . a d d E v e n t L i s t e n e r ("loadEnd" , f u n c t i o n (e v t D a t a) {
494 c o n s o l e . l o g (e v t D a t a) ;
495 var e d a t a = e v t D a t a . s p l i t (’/’) ;
496 var curZoom = p a r s e I n t (e d a t a [2]) ;
497 even tLog . push (["Raw_Map" , "Ending to zoom in" , curZoom]) ;
498 i f (r a t e m a p s ["Raw_Map"] . map . zoom () == 5)
499 r a t e T i m e s ["Raw_Map"] . push (curZoom − preZoom) ;
500 e l s e
501 r a t e T i m e s ["Raw_Map"] . push (curZoom − preZoom − 500) ;
502 preZoom = curZoom ;
503 c o n s o l e . l o g ("zoom level:" + r a t e m a p s ["Raw_Map"] . map . zoom ())

;
504 var z = r a t e m a p s ["Raw_Map"] . map . zoom () ;
505 i f (z != goalZ) window . s e t T i m e o u t (f u n c t i o n () {
506 r a t e m a p s ["Raw_Map"] . map . r e n d e r e d = {} ;
507 even tLog . push (["Raw_Map" , "Starting to zoom in" , (new

Date ()) . ge tTime ()]) ;
508 r a t e m a p s ["Raw_Map"] . map . zoomBy (z o o m I n t e r v a l) ;
509 } , 500) ;
510 e l s e {
511 window . pos tMessage ("evt://" + evtName + "/Raw_Map/" +

e d a t a [2] , "*") ;
512 }
513 }) ;
514 r u n T e s t (t e s tOp , d a t a) ;
515 }) ;
516 myEventObserver . a d d E v e n t L i s t e n e r (evtName , runTes tOp2 3) ;
517 }
518 e l s e i f (t e s t O p == 6) {
519 myEventObserver . a d d E v e n t L i s t e n e r ("layerRendered" , f u n c t i o n (e v t D a t a) {
520 c o n s o l e . l o g (e v t D a t a) ;
521 preZoom = (new Date ()) . ge tTime () ;
522 myEventObserver . a d d E v e n t L i s t e n e r ("loadEnd" , f u n c t i o n (e v t D a t a) {
523 c o n s o l e . l o g (e v t D a t a) ;
524 var e d a t a = e v t D a t a . s p l i t (’/’) ;
525 var curZoom = p a r s e I n t (e d a t a [2]) ;
526 even tLog . push (["Raw_Map" , "Ending to pan" , curZoom]) ;
527 i f (noPans == 0)
528 r a t e T i m e s ["Raw_Map"] . push (curZoom − preZoom) ;
529 e l s e
530 r a t e T i m e s ["Raw_Map"] . push (curZoom − preZoom − 500) ;
531 preZoom = curZoom ;
532 noPans += 1 ;
533 i f (noPans < 3) window . s e t T i m e o u t (f u n c t i o n () {
534 r a t e m a p s ["Raw_Map"] . map . r e n d e r e d = {} ;
535 even tLog . push (["Raw_Map" , "Starting to pan" , (new Date ()

) . ge tTime ()]) ;
536 r a t e m a p s ["Raw_Map"] . map . panBy ({ x : 2 5 6 , y : 2 5 6}) ;

111

537 //noPans += 1;
538 } , 500) ;
539 e l s e {
540 window . pos tMessage ("evt://pan3x/Raw_Map/" + e d a t a [2] , "*

") ;
541 }
542 }) ;
543 r u n T e s t (t e s tOp , d a t a) ;
544 }) ;
545 myEventObserver . a d d E v e n t L i s t e n e r ("pan3x" , r unTes tOp2 3) ;
546 }
547 }
548 }
549
550 f u n c t i o n p r e p a r e T e s t R u n (t e s tOp , mapSize , d a t a) {
551 var o r i g T e s t O p = t e s t O p ;
552 i f (t e s t O p >= 2 && t e s t O p <= 7) t e s t O p = 0 ;
553 e l s e i f (t e s t O p == 8) t e s t O p = 1 ;
554 var z = (o r i g T e s t O p == 5 | | o r i g T e s t O p == 6) ? 7 : 4 ;
555 i f (t e s t O p == 0 | | t e s t O p == 1) {
556 var map ids = ["Raw_Map"] ;
557 i f (t e s t O p == 1) map ids . push ("Spatial_Rate_Map") ;
558 f o r (var i = 0 ; i < map ids . l e n g t h ; i ++){
559 var map id = map ids [i] ;
560 i f (map id in r a t e m a p s) des t royMap (r a t e m a p s [map id]) ;
561 var c l s f = {
562 method : ’Quantile’ ,
563 n o c l s : 5 ,
564 c o l o r s c h e m e : ’Blues’
565 } ;
566 r a t e m a p s [map id] = new RateMap (map id , mapSize , nul l , z , nul l , c l s f

) ;
567 }
568 i f (t e s t O p == 1) renderedMaps = [] ;
569 }
570 i f (o r i g T e s t O p >= 2 && o r i g T e s t O p <= 7) {
571 i f (o r i g T e s t O p == 4 | | o r i g T e s t O p == 5 | | o r i g T e s t O p == 6)
572 myEventObserver . r e m o v e E v e n t L i s t e n e r ("loadEnd") ;
573 drawRateMap (r a t e m a p s ["Raw_Map"] , da t a , "Raw_Map") ;
574 i f (o r i g T e s t O p == 4 | | o r i g T e s t O p == 6) {
575 var t = (new Date ()) . ge tTime () ;
576 r a t e T i m e s ["Raw_Map"] . push (t − r a t e m a p s ["Raw_Map"] . i n i t T i m e) ;
577 r a t e m a p s ["Raw_Map"] . s t a r t G e t t i n g R a t e s () ;
578 }
579 i f (o r i g T e s t O p == 7) {
580 s e s s i o n S t o r a g e . c l e a r () ;
581 d e l e t e s e l e c t O b s e r v e r ;
582 s e l e c t O b s e r v e r = po . s e l e c t () ;
583 s e l e c t O b s e r v e r . add (r a t e m a p s ["Raw_Map"] . s e l e c t i o n L a y e r) ;
584 }
585 }
586 e l s e i f (o r i g T e s t O p == 8) {
587 renderedMaps = [] ;
588 s e s s i o n S t o r a g e . c l e a r () ;
589 s e l e c t O b s e r v e r = po . s e l e c t () ;
590 f o r (var map id in r a t e m a p s) {
591 drawRateMap (r a t e m a p s [map id] , da t a , map id) ;
592 s e l e c t O b s e r v e r . add (r a t e m a p s [map id] . s e l e c t i o n L a y e r) ;
593 }
594 }
595 }
596
597 f u n c t i o n r u n T e s t (t e s tOp , d a t a) {
598 c o n s o l e . l o g (’runTest’ + t e s t O p) ;

112

599 var f unc = g e t T e s t F u n c t i o n (t e s t O p) ;
600 i f (t e s t O p == 0 | | t e s t O p == 1) {
601 var map ids = ["Raw_Map"] ;
602 i f (t e s t O p == 1) map ids . push ("Spatial_Rate_Map") ;
603 f o r (var i = 0 ; i < map ids . l e n g t h ; i ++){
604 var map id = map ids [i] ;
605 f unc (r a t e m a p s [map id] , da t a , map id) ;
606 }
607 re turn true ;
608 }
609 e l s e i f (t e s t O p >= 2 && t e s t O p <= 7) {
610 c o n s o l e . l o g (’test operation ’ + t e s t O p + ’ starts ..’) ;
611 f unc (r a t e m a p s ["Raw_Map"] , da t a , "Raw_Map") ;
612 }
613 e l s e i f (t e s t O p == 8) {
614 c o n s o l e . l o g (’test operation ’ + t e s t O p + ’ starts ..’) ;
615 f unc (r a t e m a p s) ;
616 }
617 }
618
619 f u n c t i o n ge tTes tOp () {
620 re turn document . forms ["options"] . t e s t o p e r a t i o n . s e l e c t e d I n d e x ;
621 }
622
623 f u n c t i o n g e t T e s t F u n c t i o n (op) {
624 i f (op == 0 | | op == 1) re turn drawRateMap ;
625 e l s e i f (op == 2) re turn c h a n g e C l a s s i f i c a t i o n ;
626 e l s e i f (op == 3) re turn f i l t e r B y P r o b ;
627 e l s e i f (op == 4) re turn zoomIn3x ;
628 e l s e i f (op == 5) re turn zoomOut3x ;
629 e l s e i f (op == 6) re turn pan3x ;
630 e l s e i f (op == 7) re turn h i g h l i g h t P o l y I n O n e M a p ;
631 e l s e i f (op == 8) re turn l inkMaps ;
632 }
633
634 f u n c t i o n g e t T e s t D a t a () {
635 var mapdata = document . forms ["options"] . d a t a . s e l e c t e d I n d e x ;
636 i f (mapdata == 0) {
637 t i l e s e t = ’mhwang4:1F7D3BE8E027C405D8925A66C38A692E’ ;
638 t e s t f e a t s = t e s t f e a t s 1 ;
639 re turn { d a t a : ’unemployment_2009_main_’ , e v t : ’UNEMP’ , pop : ’POP1’ ,
640 wgt : ’unemployment_2009_main.gal’ } ;
641 }
642 e l s e i f (mapdata == 1) {
643 t i l e s e t = ’mhwang4:175F93390222A7E1BDE019FDA4EDFCA9’ ;
644 t e s t f e a t s = t e s t f e a t s 2 ;
645 re turn { d a t a : ’pcsa_mainland_’ , e v t : ’SUM_Sum_AG’ , pop : ’SUM_Sum_PO’ ,
646 wgt : ’pcsa_mainland_q1.gal’ } ;
647 }
648 e l s e i f (mapdata == 2) {
649 t i l e s e t = ’mhwang4:0027C0AFE2E03586D6719B96EBEB70A9’ ;
650 t e s t f e a t s = t e s t f e a t s 3 ;
651 re turn { d a t a : ’sd_from_tracts_’ , e v t : ’SUM_AGE_65’ , pop : ’SUM_POP200’ ,
652 wgt : ’sd_from_tracts_q1.gal’ } ;
653 }
654 e l s e i f (mapdata == 3) {
655 t i l e s e t = ’mhwang4:F4E47B01C0BC68B5E9ED4E8EADADD554’ ;
656 t e s t f e a t s = t e s t f e a t s 4 ;
657 re turn { d a t a : ’usps_zip_’ , e v t : ’Over_65’ , pop : ’Sum_POP200’ ,
658 wgt : ’zip_mainland_q1.gal’ } ;
659 }
660 e l s e i f (mapdata == 4) {
661 t i l e s e t = ’mhwang4:A1CB5A8404F8051CE46ECE31DFE35EF9’ ;
662 t e s t f e a t s = t e s t f e a t s 5 ;

113

663 re turn { d a t a : ’tracts_’ , e v t : ’AGE_65_UP’ , pop : ’POP2000’ ,
664 wgt : ’tracts_q1.gal’ } ;
665 }
666 re turn n u l l ;
667 }
668
669 f u n c t i o n getMapSize () {
670 var r e s = {wid th : nul l , h e i g h t : n u l l } ;
671 var m a p s i z e i n x = document . forms ["options"] . maps ize . s e l e c t e d I n d e x ;
672 i f (m a p s i z e i n x == 0) {
673 r e s . w id th = 400 ;
674 r e s . h e i g h t = 200 ;
675 } e l s e i f (m a p s i z e i n x == 1) {
676 r e s . w id th = 800 ;
677 r e s . h e i g h t = 400 ;
678 } e l s e i f (m a p s i z e i n x == 2) {
679 r e s . w id th = 1200 ;
680 r e s . h e i g h t = 600 ;
681 } e l s e {
682 r e s . w id th = 1600 ;
683 r e s . h e i g h t = 800 ;
684 }
685 re turn r e s ;
686 }
687
688 f u n c t i o n g e t N o T e s t s () {
689 re turn p a r s e I n t (document . forms ["options"] . n o t e s t s . v a l u e) ;
690 }
691
692 f u n c t i o n hex (x) {
693 re turn ("0" + p a r s e I n t (x) . t o S t r i n g (1 6)) . s l i c e (−2) ;
694 }
695
696 f u n c t i o n rgb2hex (rgb) {
697 rgb = rgb . match (/ ˆ rgb \ ((\ d +) ,\ s *(\ d +) ,\ s *(\ d +) \) $ /) ;
698 re turn "#" + hex (rgb [1]) + hex (rgb [2]) + hex (rgb [3]) ;
699 }

A.2.2 Map component
1 var po = org . polymaps ;
2
3 f u n c t i o n RateMap (c o n t a i n e r , s i z e , c e n t e r , zoom , zoomRange , c l a s s i f i c a t i o n) {
4
5 t h i s . c o n t a i n e r = c o n t a i n e r ;
6 t h i s . c o n t r o l l e r = t h i s . c o n t a i n e r + ’_controller’ ;
7 t h i s . map = n u l l ;
8 t h i s . w id th = 800 ;
9 t h i s . h e i g h t = 400 ;

10 t h i s . mapClass = "map_800_400" ;
11 i f (s i z e != n u l l) {
12 t h i s . w id th = s i z e . wid th ;
13 t h i s . h e i g h t = s i z e . h e i g h t ;
14 t h i s . mapClass = "map_" + S t r i n g (t h i s . w id th) + "_" + S t r i n g (t h i s . h e i g h t) ;
15 }
16 i f ($ ("#" + c o n t a i n e r) . l e n g t h == 0) {
17 $ ("body") . append (’
<div id="’ + c o n t a i n e r + ’" class="’ +
18 t h i s . mapClass + ’"></div>
’) ;
19 }
20 t h i s . c e n t e r = { l a t : 39 , l o n : −96};
21 i f (c e n t e r != n u l l) t h i s . c e n t e r = c e n t e r ;
22 t h i s . zoom = 4 ;
23 i f (zoom != n u l l) t h i s . zoom = zoom ;
24 t h i s . zoomRange = [1 , 1 8] ;

114

25 i f (zoomRange != n u l l) t h i s . zoomRange = zoomRange ;
26 t h i s . c l a s s i f i c a t i o n = ’Quantile’ ;
27 i f (’method’ in c l a s s i f i c a t i o n)
28 t h i s . c l a s s i f i c a t i o n = c l a s s i f i c a t i o n . method ;
29 t h i s . n o c l s = 5 ;
30 i f (’nocls’ in c l a s s i f i c a t i o n)
31 t h i s . n o c l s = c l a s s i f i c a t i o n . n o c l s ;
32 t h i s . c o l o r s c h e m e = "Blues" ;
33 i f (’colorscheme’ in c l a s s i f i c a t i o n)
34 t h i s . c o l o r s c h e m e = c l a s s i f i c a t i o n . c o l o r s c h e m e ;
35 t h i s . qs = n u l l ;
36 t h i s . l a y e r = n u l l ;
37 t h i s . r a t e s = n u l l ;
38 t h i s . p r o b a b i l i t i e s = n u l l ;
39 t h i s . t i l e s = n u l l ;
40 t h i s . c l a s s e s = n u l l ;
41 t h i s . c l a s s i f i c a t i o n i d = ’’ ;
42 t h i s . c o l o r s c h e m e i d = ’’ ;
43 t h i s . u r l b a s e = proxy + "/gws_sqlite/dyntm/t/?ts=" + t i l e s e t ;
44 t h i s . l e g e n d = n u l l ;
45 t h i s . p r o b t h r e s h o l d = n u l l ;
46 t h i s . i n i t T i m e = n u l l ;
47 t h i s . r e n d e r e d = {} ;
48 }
49
50 RateMap . p r o t o t y p e = {
51
52 draw map : f u n c t i o n () {
53 i f (t h i s . map != n u l l) re turn ;
54
55 t h i s . map = po . map ()
56 . s i z e ({ x : t h i s . width , y : t h i s . h e i g h t })
57 . c o n t a i n e r (document . ge tE lemen tById (t h i s . c o n t a i n e r) . appendCh i ld (po .

svg ("svg")))
58 . c e n t e r (t h i s . c e n t e r)
59 . zoom (t h i s . zoom)
60 . zoomRange (t h i s . zoomRange)
61 . add (po . i n t e r a c t ()) ;
62
63 var pMap = t h i s ;
64 f u n c t i o n t i l e u r l t e m p l a t e (t) {
65 var u r l = (pMap . u r l b a s e + ’&cl=’ + pMap . c l a s s i f i c a t i o n i d) ;
66 u r l += (’&cs=’ + pMap . c o l o r s c h e m e i d) ;
67 u r l += (’&x=’ + t . column + "&y=" + t . row + "&z=" + t . zoom) ;
68 u r l += (’&time=’ + S t r i n g ((new Date ()) . ge tTime ())) ;
69 re turn u r l ;
70 } ;
71
72 t h i s . l a y e r = po . image () . u r l (t i l e u r l t e m p l a t e) . l o g (f a l s e)
73 . on ("load" , f u n c t i o n (t) {
74 //var t1 = (new Date()).getTime();
75 pMap . r e n d e r e d [t . t i l e . key] = t rue ;
76 var a l l r e n d e r e d = t rue ;
77 f o r (var l o c k in pMap . l a y e r . cache . l o c k s ()) {
78 i f (! (l o c k in pMap . r e n d e r e d)) {
79 a l l r e n d e r e d = f a l s e ;
80 break ;
81 }
82 }
83 i f (a l l r e n d e r e d)
84 window . pos tMessage ("evt://loadEnd/" + pMap .

c o n t a i n e r +
85 "/" + S t r i n g ((new Date ()) . ge tTime ()) , "*") ;
86 }) ;

115

87
88 t h i s . map . add (t h i s . l a y e r) ;
89
90 t h i s . s e l e c t i o n L a y e r = po . geoJson () . t i l e (f a l s e) . l o g (f a l s e) . t i l e r e l o a d (

t rue) ;
91 t h i s . map . add (t h i s . s e l e c t i o n L a y e r) ;
92 var pMap = t h i s ;
93 f u n c t i o n c l i c k E v t D i s p a t c h e r (e) {
94 i f (pMap . map . mouseEvt () != n u l l) {
95 pMap . map . mouseEvt (n u l l) ;
96 re turn ;
97 }
98 var p = {x : e . c l i e n t X , y : e . c l i e n t Y } ,
99 l o c = pMap . map . p o i n t L o c a t i o n (p) ,

100 t i l e = pMap . map . l o c a t i o n C o o r d i n a t e (pMap . map . p o i n t L o c a t i o n ({ x : p . x
, y : p . y })) ,

101 e v t = {
102 t y p e : ’click’ ,
103 t i l e : {column : Math . f l o o r (t i l e . column) , row : Math . f l o o r (t i l e

. row) ,
104 zoom : t i l e . zoom} ,
105 s e l e c t : e . t a r g e t . tagName == ’image’?
106 t rue : ! ($ (e . t a r g e t) . a t t r (’class’) . ba seVa l == ’’) ,
107 l a y e r s : pMap . qs . da t a ,
108 bbox : [S t r i n g (l o c . l o n) , S t r i n g (l o c . l a t) ,
109 S t r i n g (l o c . l o n + 0 .0000000001) , S t r i n g (l o c . l a t +

0 .0000000001)] .
110 j o i n (’,’)
111 } ;
112 s e l e c t O b s e r v e r . d i s p a t c h (e v t) ;
113 } ;
114 t h i s . s e l e c t i o n L a y e r . c o n t a i n e r () . s e t A t t r i b u t e ("class" , "selection_layer")

;
115 t h i s . map . c o n t a i n e r () . a d d E v e n t L i s t e n e r ("click" , c l i c k E v t D i s p a t c h e r , f a l s e

) ;
116 t h i s . s e l e c t i o n L a y e r . on (’show’ , f u n c t i o n (e) {
117 f o r (var i = 0 ; i < e . f e a t u r e s . l e n g t h ; i ++)
118 e . f e a t u r e s [i] . e l e m e n t . o n c l i c k = c l i c k E v t D i s p a t c h e r ;
119 }) ;
120 t h i s . s e l e c t i o n L a y e r . on (’select’ , f u n c t i o n (e) {
121 i f (! e . f e a t u r e s) re turn ;
122 i f (pMap . s e l e c t i o n L a y e r . f e a t u r e s () == u n d e f i n e d)
123 pMap . s e l e c t i o n L a y e r . f e a t u r e s (e . f e a t u r e s) ;
124 e l s e
125 pMap . s e l e c t i o n L a y e r . f e a t u r e s (pMap . s e l e c t i o n L a y e r . f e a t u r e s () .
126 c o n c a t (e . f e a t u r e s)) ;
127 var t i l e s = pMap . s e l e c t i o n L a y e r . t i l e s () ;
128 f o r (var t i l e in t i l e s) {
129 var t = pMap . s e l e c t i o n L a y e r . cache . un loa d (t i l e , t rue) ;
130 t . e l e m e n t . pa ren tNode . removeChi ld (t . e l e m e n t) ;
131 }
132 pMap . map . d i s p a t c h ({ t y p e : ’move’}) ;
133 window . pos tMessage ("evt://featHighlighted/" + pMap . c o n t a i n e r + "/" +
134 S t r i n g ((new Date ()) . ge tTime ()) , "*") ;
135 }) ;
136 t h i s . s e l e c t i o n L a y e r . on (’unselect’ , f u n c t i o n (e) {
137 i f (! e . f e a t u r e s) re turn ;
138 var f e a t s = pMap . s e l e c t i o n L a y e r . f e a t u r e s () ,
139 i d s = {} ;
140 f o r (var f in e . f e a t u r e s) i d s [e . f e a t u r e s [f] . i d] = t rue ;
141 f e a t s = f e a t s . f i l t e r (f u n c t i o n (f) { re turn ! (f . i d in i d s) ; })
142 pMap . s e l e c t i o n L a y e r . f e a t u r e s (f e a t s) ;
143 var t i l e s = pMap . s e l e c t i o n L a y e r . t i l e s () ;
144 f o r (var t i l e in t i l e s) {

116

145 var t = pMap . s e l e c t i o n L a y e r . cache . un loa d (t i l e , t rue) ;
146 t . e l e m e n t . pa ren tNode . removeChi ld (t . e l e m e n t) ;
147 }
148 pMap . map . d i s p a t c h ({ t y p e : ’move’}) ;
149 }) ;
150
151 t h i s . map . add (po . compass () . pan ("none")) ;
152 t h i s . a d d c o n t r o l l e r () ;
153 t h i s . a d d l e g e n d () ;
154 t h i s . a d d p r o b f i l t e r () ;
155 t h i s . a d d m a p c l a s s i f i e r () ;
156 t h i s . s e t c o l o r s c h e m e (t h i s . c o l o r s c h e m e) ;
157
158 } ,
159
160 a d d c o n t r o l l e r : f u n c t i o n () {
161 var m a p c o n t a i n e r = $ (’#’ + t h i s . c o n t a i n e r) ;
162 m a p c o n t a i n e r . append (’<div id="’ + t h i s . c o n t r o l l e r +
163 ’" class="controller"></div>’) ;
164 $ (’#’ + t h i s . c o n t r o l l e r) . c s s ("left" , t h i s . w id th) ;
165 } ,
166
167 a d d l e g e n d : f u n c t i o n () {
168 var m a p c o n t r o l l e r = $ (’#’ + t h i s . c o n t r o l l e r) ;
169 t h i s . l e g e n d = t h i s . c o n t a i n e r + ’_legend’ ;
170 m a p c o n t r o l l e r . append (’<div class="legend_button"><p>Legend </p><div id="

’ +
171 t h i s . l e g e n d + ’" class="legend_content"></div></div>’) ;
172 } ,
173
174 s e t c o l o r s c h e m e : f u n c t i o n (c s) {
175 t h i s . c o l o r s c h e m e = cs ;
176 t h i s . map . c o n t a i n e r () . s e t A t t r i b u t e ("class" , t h i s . c o l o r s c h e m e) ;
177 i f (t h i s . c l a s s e s != n u l l)
178 t h i s . s e t L e g e n d () ;
179 } ,
180
181 a d d p r o b f i l t e r : f u n c t i o n () {
182 var m a p c o n t r o l l e r = $ (’#’ + t h i s . c o n t r o l l e r) ;
183 t h i s . p r o b f i l t e r = t h i s . c o n t a i n e r + ’_prob_filter’ ;
184 var p r o b f i l t e r = ’<div class="prob_filter"><p>Probability Filter </p><

select id="’
185 + t h i s . p r o b f i l t e r + ’">’ ;
186 p r o b f i l t e r += ’<option value="1">None</option>’ ;
187 p r o b f i l t e r += ’<option value="0.1">0.1</option>’ ;
188 p r o b f i l t e r += ’<option value="0.05">0.05</option>’ ;
189 p r o b f i l t e r += ’<option value="0.01">0.01</option>’ ;
190 p r o b f i l t e r += ’</select>’ ;
191 m a p c o n t r o l l e r . append (p r o b f i l t e r) ;
192 var t h i s m a p = t h i s ;
193 $ (’#’ + t h i s . p r o b f i l t e r) . change (f u n c t i o n () {
194 i f (t h i s m a p . p r o b a b i l i t i e s != n u l l) {
195 t h i s m a p . f i l t e r R a t e M a p (n u l l) ;
196 re turn ;
197 }
198 var qs = t h i s m a p . qs ;
199 qs [’s_method’] = ’Choynowski’ ;
200 var t 1 = (new Date ()) . ge tTime () ;
201 c o n s o l e . l o g (t h i s m a p . c o n t a i n e r + ":Starting to get probabilities:" +

t 1) ;
202 even tLog . push ([t h i s m a p . c o n t a i n e r , "StartToGetProb" , t 1]) ;
203 $. a j a x (
204 { u r l : p roxy + ’/web_esda/service_proxy/smoothing/’ ,
205 d a t a : qs ,

117

206 da taType : ’jsonp’ ,
207 s u c c e s s : f u n c t i o n (r e s , s t a t , xhr) {
208 var t 2 = (new Date ()) . ge tTime () ;
209 c o n s o l e . l o g (t h i s m a p . c o n t a i n e r + ":Ending to get

probabilities:" + t 2) ;
210 even tLog . push ([t h i s m a p . c o n t a i n e r , "EndToGetProb" , t 2]) ;
211 r a t e T i m e s [t h i s m a p . c o n t a i n e r] . push (t 2 − t 1) ;
212 t h i s m a p . f i l t e r R a t e M a p (r e s , s t a t , xhr) ;
213 }
214 }
215) ;
216 }) ;
217 } ,
218
219 f i l t e r R a t e M a p : f u n c t i o n (r e s , s t a t , xhr) {
220 i f (r e s != n u l l) t h i s . p r o b a b i l i t i e s = r e s . d a t a ;
221 i f (t h i s . p r o b a b i l i t i e s == n u l l | | t h i s . r a t e s == n u l l) re turn ;
222 t h i s . p r o b t h r e s h o l d = $ (’#’ + t h i s . p r o b f i l t e r) . v a l () ;
223 var t 0 = (new Date ()) . ge tTime () ;
224 c o n s o l e . l o g (t h i s . c o n t a i n e r + ":Starting to filter rates:" + t 0) ;
225 even tLog . push ([t h i s . c o n t a i n e r , "StartToFilter" , t 0]) ;
226 i f (t h i s . c l a s s e s == n u l l) t h i s . c l a s s i f y R a t e s () ;
227 var c l a s s i d s = t h i s . g e t c l a s s i d s () ;
228 var t 1 = (new Date ()) . ge tTime () ;
229 c o n s o l e . l o g (t h i s . c o n t a i n e r + ":Ending to filter rates:" + t 1) ;
230 even tLog . push ([t h i s . c o n t a i n e r , "EndToFilter" , t 1]) ;
231 r a t e T i m e s [t h i s . c o n t a i n e r] . push (t 1 − t 0) ;
232 var pMap = t h i s ;
233 var t 2 = (new Date ()) . ge tTime () ;
234 c o n s o l e . l o g (t h i s . c o n t a i n e r + ":Starting to cache classes:" + t 2) ;
235 even tLog . push ([t h i s . c o n t a i n e r , "StartToCacheClasses" , t 2]) ;
236 $. a j a x ({
237 u r l : p roxy + ’/tileservice/raster/service_proxy/cl’ ,
238 d a t a : { d a t : c l a s s i d s . j o i n (’,’) , t s : t i l e s e t } ,
239 t y p e : ’POST’ ,
240 da taType : ’jsonp’ ,
241 s u c c e s s : f u n c t i o n (r e s , s t a t , xhr) {
242 pMap . c l a s s i f i c a t i o n i d = r e s [’clsf_id’] ;
243 var t 3 = (new Date ()) . ge tTime () ;
244 c o n s o l e . l o g (pMap . c o n t a i n e r + ":Ending to cache classes:" + t 3) ;
245 even tLog . push ([pMap . c o n t a i n e r , "EndToCacheClasses" , t 3]) ;
246 r a t e T i m e s [pMap . c o n t a i n e r] . push (t 3 − t 2) ;
247 var o l d t i l e s = {} ;
248 var t i l e s = pMap . l a y e r . cache . l o c k s () ;
249 f o r (var t i l e in t i l e s) {
250 o l d t i l e s [t i l e] = t i l e s [t i l e] . e l e m e n t . h r e f . baseVa l ;
251 }
252 var c h e c k T i l e U p d a t e d = f u n c t i o n (o l d I n f o) {
253 var n e w t i l e s = pMap . l a y e r . cache . l o c k s () ;
254 var r e s = t rue ;
255 f o r (var t i l e in o l d I n f o) {
256 i f (n e w t i l e s [t i l e] . e l e m e n t . h r e f . ba seVa l == o l d I n f o [t i l e

]) {
257 r e s = f a l s e ;
258 break ;
259 }
260 }
261 re turn r e s ;
262 } ;
263 c o n s o l e . l o g (pMap . c o n t a i n e r + ":Starting to render:" + t 3) ;
264 even tLog . push ([pMap . c o n t a i n e r , "StartToRender" , t 3]) ;
265 pMap . l a y e r . u p d a t e t i l e () ;
266 var u p d a t e c o m p l e t e = c h e c k T i l e U p d a t e d (o l d t i l e s) ;
267 whi le (u p d a t e c o m p l e t e == f a l s e) {

118

268 u p d a t e c o m p l e t e = c h e c k T i l e U p d a t e d (o l d t i l e s) ;
269 }
270 var t 4 = (new Date ()) . ge tTime () ;
271 c o n s o l e . l o g (pMap . c o n t a i n e r + ":Ending to render:" + t 4) ;
272 even tLog . push ([pMap . c o n t a i n e r , "EndToRender" , t 4]) ;
273 r a t e T i m e s [pMap . c o n t a i n e r] . push (t 4 − t 3) ;
274 window . pos tMessage ("evt://filteredByProb/" + pMap . c o n t a i n e r + "/"

+
275 S t r i n g (t 4) , "*") ;
276 }
277 }) ;
278
279 } ,
280
281 a d d m a p c l a s s i f i e r : f u n c t i o n () {
282 var m a p c o n t r o l l e r = $ (’#’ + t h i s . c o n t r o l l e r) ;
283 t h i s . c l a s s i f i c a t i o n t o o l = t h i s . c o n t a i n e r + ’_classification’ ;
284 m a p c o n t r o l l e r . append (’<div class="classification_tool" id="’ +
285 t h i s . c l a s s i f i c a t i o n t o o l + ’"><p>Map Classification </p></div>’) ;
286 var c l a s s i f i c a t i o n t o o l = $ (’#’ + t h i s . c l a s s i f i c a t i o n t o o l) ;
287 c l a s s i f i c a t i o n t o o l . append ($ (’#classification_selector’) . c l o n e () .
288 a t t r (’id’ , t h i s . c o n t a i n e r + ’_clsf’) . show ()) ;
289 c l a s s i f i c a t i o n t o o l . append (’
’) ;
290 c l a s s i f i c a t i o n t o o l . append ($ (’#noclass_selector’) . c l o n e () .
291 a t t r (’id’ , t h i s . c o n t a i n e r + ’_nocls’) . show ()) ;
292 c l a s s i f i c a t i o n t o o l . append (’
’) ;
293 c l a s s i f i c a t i o n t o o l . append ($ (’#colorscheme_selector’) . c l o n e () .
294 a t t r (’id’ , t h i s . c o n t a i n e r + ’_color’) . show ()) ;
295 var t h i s m a p = t h i s ;
296 $ (’#’ + t h i s . c o n t a i n e r + ’_clsf’) . change (f u n c t i o n () {
297 var c l s f = {method : $ (t h i s) . v a l () , n o c l s : t h i s m a p . n o c l s ,
298 c o l o r s c h e m e : t h i s m a p . c o l o r s c h e m e } ;
299 t h i s m a p . u p d a t e c l a s s i f i c a t i o n (c l s f) ;
300 }) ;
301 $ (’#’ + t h i s . c o n t a i n e r + ’_nocls’) . change (f u n c t i o n () {
302 var c l s f = {method : t h i s m a p . c l a s s i f i c a t i o n , n o c l s : $ (t h i s) . v a l () ,
303 c o l o r s c h e m e : t h i s m a p . c o l o r s c h e m e } ;
304 t h i s m a p . u p d a t e c l a s s i f i c a t i o n (c l s f) ;
305 }) ;
306 $ (’#’ + t h i s . c o n t a i n e r + ’_color’) . change (f u n c t i o n () {
307 var c l s f = {method : t h i s m a p . c l a s s i f i c a t i o n , n o c l s : t h i s m a p . n o c l s ,
308 c o l o r s c h e m e : $ (t h i s) . v a l () } ;
309 t h i s m a p . u p d a t e c l a s s i f i c a t i o n (c l s f) ;
310 }) ;
311 } ,
312
313 u p d a t e c l a s s i f i c a t i o n : f u n c t i o n (c l s f) {
314 var c s c h a n g e d = f a l s e ,
315 c l c h a n g e d = f a l s e ;
316 i f (t h i s . c o l o r s c h e m e != c l s f . c o l o r s c h e m e) {
317 t h i s . s e t c o l o r s c h e m e (c l s f . c o l o r s c h e m e) ;
318 c s c h a n g e d = t rue ;
319 }
320 i f (t h i s . c l a s s i f i c a t i o n != c l s f . method | | t h i s . n o c l s != c l s f . n o c l s) {
321 t h i s . c l a s s i f i c a t i o n = c l s f . method ;
322 t h i s . n o c l s = c l s f . n o c l s ;
323 t h i s . c l a s s i f y R a t e s () ;
324 c l c h a n g e d = t rue ;
325 }
326 t h i s . r enderRateMap (c l c h a n g e d , c s c h a n g e d) ;
327 } ,
328
329 c l a s s i f y R a t e s : f u n c t i o n () {
330 i f (t h i s . c l a s s i f i c a t i o n == ’Quantile’)

119

331 t h i s . c l a s s e s = pv . S c a l e . m a p q u a n t i l e () . i n t e r v a l s (t h i s . n o c l s) ;
332 e l s e i f (t h i s . c l a s s i f i c a t i o n == ’Percentile’)
333 t h i s . c l a s s e s = pv . S c a l e . p e r c e n t i l e () . i n t e r v a l s () ;
334 e l s e i f (t h i s . c l a s s i f i c a t i o n == ’Boxmap’)
335 t h i s . c l a s s e s = pv . S c a l e . boxmap () . i n t e r v a l s () ;
336 e l s e i f (t h i s . c l a s s i f i c a t i o n == ’Equal_Interval’)
337 t h i s . c l a s s e s = pv . S c a l e . e q u a l i n t e r v a l () . i n t e r v a l s (t h i s . n o c l s) ;
338
339 t h i s . c l a s s e s . domain (pv . v a l u e s (t h i s . r a t e s)) . r a n g e () ;
340 t h i s . s e t L e g e n d () ;
341 } ,
342
343 s e t L e g e n d : f u n c t i o n () {
344 var l e g e n d c o n t e n t = $ ("#" + t h i s . l e g e n d) ;
345 l e g e n d c o n t e n t . empty () ;
346 var c s s = document . s t y l e S h e e t s [0] . c s s R u l e s [1] . s t y l e S h e e t . c s s R u l e s ;
347 var c o l o r s = {} ;
348 f o r (var i = 0 ; i < c s s . l e n g t h ; i ++){
349 i f (c s s [i] . s e l e c t o r T e x t . toLowerCase () . indexOf ("." +
350 t h i s . c o l o r s c h e m e . toLowerCase ()) != −1){
351 c o l o r s [c s s [i] . s e l e c t o r T e x t . toLowerCase ()] =
352 c s s [i] . s t y l e . c s s T e x t . s u b s t r i n g (6) ;
353 }
354 }
355
356 var b r e a k p o i n t s = t h i s . c l a s s e s . g e t q () ,
357 n = t h i s . c l a s s e s . g e t n () ;
358 f o r (var i = 0 ; i < b r e a k p o i n t s . l e n g t h − 1 ; i ++){
359 var c l s = "q" + i + "-" + n ;
360 var c o l o r = c o l o r s ["." + t h i s . c o l o r s c h e m e . toLowerCase () + " ." + c l s

] ;
361 var c l a s s I t e m = ’<span style="background: ’ + c o l o r
362 + ’;"> ’ ;
363 c l a s s I t e m += b r e a k p o i n t s [i] . t o P r e c i s i o n (3) . t o S t r i n g () + ’ ~ ’ +
364 b r e a k p o i n t s [i + 1] . t o P r e c i s i o n (3) . t o S t r i n g () ;
365 c l a s s I t e m += ’
’ ;
366 l e g e n d c o n t e n t . append (c l a s s I t e m) ;
367 }
368 } ,
369
370 g e t c l a s s i d s : f u n c t i o n () {
371 var c l a s s i d s = [] ;
372 f o r (var r in t h i s . r a t e s) {
373 i f (t h i s . p r o b a b i l i t i e s != n u l l && t h i s . p r o b a b i l i t i e s [r] > t h i s .

p r o b t h r e s h o l d)
374 c l a s s i d s . push (0) ;
375 e l s e {
376 c l a s s i d s . push (t h i s . c l a s s e s (t h i s . r a t e s [r])) ;
377 }
378 }
379 re turn c l a s s i d s ;
380 } ,
381
382 renderRateMap : f u n c t i o n (r e s , s t a t , xhr) {
383 i f (r e s != n u l l && t y p e o f r e s != "boolean") t h i s . r a t e s = r e s . d a t a ;
384 var t 0 = (new Date ()) . ge tTime () ;
385 c o n s o l e . l o g (t h i s . c o n t a i n e r + ":Starting to classfy rates:" + t 0) ;
386 even tLog . push ([t h i s . c o n t a i n e r , "StartToClassify" , t 0]) ;
387 i f (t h i s . c l a s s e s == n u l l) t h i s . c l a s s i f y R a t e s () ;
388 var c l a s s i d s = t h i s . g e t c l a s s i d s () ;
389 var t 1 = (new Date ()) . ge tTime () ;
390 var c l a s s i f i c a t i o n T i m e = t 1 − t 0 ;
391 c o n s o l e . l o g (t h i s . c o n t a i n e r + ":Completed to classfy rates:" + t 1) ;
392 even tLog . push ([t h i s . c o n t a i n e r , "EndToClassify" , t 1]) ;

120

393 c o n s o l e . l o g (t h i s . c o n t a i n e r + ":Time for rate classification:" +
394 c l a s s i f i c a t i o n T i m e) ;
395 var t 2 = (new Date ()) . ge tTime () ;
396 even tLog . push ([t h i s . c o n t a i n e r , "StartToRender" , t 2]) ;
397 r a t e T i m e s [t h i s . c o n t a i n e r] . push (c l a s s i f i c a t i o n T i m e) ;
398 var pMap = t h i s ;
399 var o l d c l i d = pMap . c l a s s i f i c a t i o n i d ,
400 o l d c s i d = pMap . c o l o r s c h e m e i d ,
401 i s F i r s t = (a rgumen t s . l e n g t h == 3) ;
402 var o l d t i l e s = {} ;
403 var t i l e s = pMap . l a y e r . cache . l o c k s () ;
404 f o r (var t i l e in t i l e s) {
405 o l d t i l e s [t i l e] = t i l e s [t i l e] . e l e m e n t . h r e f . ba seVa l ;
406 }
407 var c h e c k T i l e U p d a t e d = f u n c t i o n (o l d I n f o) {
408 var n e w t i l e s = pMap . l a y e r . cache . l o c k s () ;
409 var r e s = t rue ;
410 f o r (var t i l e in o l d I n f o) {
411 i f (n e w t i l e s [t i l e] . e l e m e n t . h r e f . ba seVa l == o l d I n f o [t i l e]) {
412 r e s = f a l s e ;
413 break ;
414 }
415 }
416 re turn r e s ;
417 } ;
418 var r e rende rMap = f u n c t i o n (newMap , c h e c k T a r g e t) {
419 var ev tType = newMap? ’layerRendered’ : ’classificationUpdated’ ;
420 var u p d a t e = f a l s e ;
421 i f (! newMap && (pMap . c l a s s i f i c a t i o n == ’Quantile’ | |
422 pMap . c l a s s i f i c a t i o n == ’Equal Interval’)) u p d a t e = t rue ;
423 e l s e i f (c h e c k T a r g e t == ’cs’ && pMap . c o l o r s c h e m e i d != o l d c s i d)
424 u p d a t e = t rue ;
425 e l s e i f (c h e c k T a r g e t == ’cl’ && pMap . c l a s s i f i c a t i o n i d != o l d c l i d)
426 u p d a t e = t rue ;
427 i f (u p d a t e) {
428 pMap . l a y e r . u p d a t e t i l e () ;
429 var u p d a t e c o m p l e t e = c h e c k T i l e U p d a t e d (o l d t i l e s) ;
430 whi le (u p d a t e c o m p l e t e == f a l s e) {
431 u p d a t e c o m p l e t e = c h e c k T i l e U p d a t e d (o l d t i l e s) ;
432 }
433 var t 3 = (new Date ()) . ge tTime () ;
434 window . pos tMessage ("evt://" + evtType + "/" + pMap . c o n t a i n e r + "

/" +
435 S t r i n g (t 3) , "*") ;
436 var r ende rT ime = t 3 − t 2 ;
437 c o n s o l e . l o g (pMap . c o n t a i n e r + ’:Time elapsed since classification

 is done:’
438 + rende rT ime) ;
439 even tLog . push ([pMap . c o n t a i n e r , "EndToRender" , t 3]) ;
440 r a t e T i m e s [pMap . c o n t a i n e r] . push (r ende rT ime) ;
441 }
442 } ;
443 i f (i s F i r s t | | a rgumen t s [0]) {
444 $. a j a x ({
445 u r l : p roxy + ’/tileservice/raster/service_proxy/cl’ ,
446 d a t a : { d a t : c l a s s i d s . j o i n (’,’) , t s : t i l e s e t } ,
447 t y p e : ’POST’ ,
448 da taType : ’jsonp’ ,
449 s u c c e s s : f u n c t i o n (r e s , s t a t , xhr) {
450 pMap . c l a s s i f i c a t i o n i d = r e s [’clsf_id’] ;
451 r e rende rMap (i s F i r s t , ’cs’) ;
452 }
453 }) ;
454 }

121

455 i f (i s F i r s t | | pMap . c l a s s i f i c a t i o n == ’Percentile’ | | pMap .
c l a s s i f i c a t i o n ==

456 ’Boxmap’) {
457 var n o c l s = t h i s . c l a s s e s . g e t n () ,
458 c s s = document . s t y l e S h e e t s [0] . c s s R u l e s [1] . s t y l e S h e e t . c s s R u l e s ,
459 c o l o r s = [] ;
460 f o r (var i = 0 ; i < c s s . l e n g t h ; i ++){
461 f o r (var j = 0 ; j < n o c l s ; j ++){
462 var s t y l e c l s = "." + t h i s . c o l o r s c h e m e . toLowerCase () + ’ .q’

+ j + ’-’
463 + n o c l s ;
464 i f (c s s [i] . s e l e c t o r T e x t . toLowerCase () . indexOf (s t y l e c l s) !=

−1){
465 var c = c s s [i] . s t y l e . g e t P r o p e r t y V a l u e ("fill") ;
466 i f (c [0] != ’#’) c = rgb2hex (c) ;
467 c o l o r s . push (c) ;
468 }
469 }
470 }
471 $. a j a x ({
472 u r l : p roxy + ’/tileservice/raster/service_proxy/cs’ ,
473 d a t a : { c o l o r s : c o l o r s . j o i n (’,’) } ,
474 da taType : ’jsonp’ ,
475 s u c c e s s : f u n c t i o n (r e s , s t a t , xhr) {
476 pMap . c o l o r s c h e m e i d = r e s [’cs_id’] ;
477 r e rende rMap (i s F i r s t , ’cl’) ;
478 }
479 }) ;
480 }
481 } ,
482
483 g e t R a t e s : f u n c t i o n (da t a , ev t , pop , sm method , wgt) {
484 var qs = t h i s . qs = {
485 ’service’ : ’smoothing’ ,
486 ’data’ : da t a ,
487 ’e’ : ev t ,
488 ’b’ : pop ,
489 ’s_method’ : sm method
490 } ;
491 i f (sm method == ’Spatial Empirical Bayes’ | | sm method == ’Spatial Rate

’ | |
492 sm method == ’Locally Weighted Average’)
493 qs [’w’] = t h i s . qs [’w’] = wgt ;
494 var pMap = t h i s ;
495 var t 1 = (new Date ()) . ge tTime () ;
496 r a t e S t a r t T i m e s [qs . s method] . push (t 1) ;
497 c o n s o l e . l o g (t h i s . c o n t a i n e r + ’:Starting the acquisition of rates:’ + t 1

) ;
498 even tLog . push ([t h i s . c o n t a i n e r , "StartToGetRate" , t 1]) ;
499 $. a j a x (
500 { u r l : p roxy + ’/web_esda/service_proxy/smoothing/’ ,
501 d a t a : qs ,
502 da taType : ’jsonp’ ,
503 s u c c e s s : f u n c t i o n (r e s , s t a t , xhr) {
504 var t 2 = (new Date ()) . ge tTime () ;
505 c o n s o l e . l o g (pMap . c o n t a i n e r + ’:Completing the acquisition of

rates:’
506 + t 2) ;
507 even tLog . push ([pMap . c o n t a i n e r , "EndToGetRate" , t 2]) ;
508 var r a t e t i m e = t 2 − t 1 ;
509 c o n s o l e . l o g (pMap . c o n t a i n e r + ’:Getting rates:’ + r a t e t i m e) ;
510 r a t e T i m e s [pMap . c o n t a i n e r] . push (r a t e t i m e) ;
511 pMap . renderRateMap (r e s , s t a t , xhr) ;
512 }

122

513 }
514) ;
515 } ,
516
517 s t a r t G e t t i n g R a t e s : f u n c t i o n () {
518 t h i s . g e t R a t e s (t h i s . d a t a , t h i s . ev t , t h i s . pop , t h i s . sm method , t h i s . wgt) ;
519 } ,
520
521 i n i t : f u n c t i o n (da t a , ev t , pop , sm method , wgt) {
522 t h i s . i n i t T i m e = (new Date ()) . ge tTime () ;
523 c o n s o l e . l o g (t h i s . c o n t a i n e r + ": Starting to draw a map:" + t h i s . i n i t T i m e)

;
524 even tLog . push ([t h i s . c o n t a i n e r , "StartMapDraw" , t h i s . i n i t T i m e]) ;
525 t h i s . draw map () ;
526 t h i s . d a t a = d a t a ;
527 t h i s . e v t = e v t ;
528 t h i s . pop = pop ;
529 t h i s . sm method = sm method ;
530 t h i s . wgt = wgt ;
531 }
532
533 }

A.2.3 Event handling
1 f u n c t i o n MessageEven tHand le r () {
2 t h i s . l i s t e n e r s = {} ;
3 var t h a t = t h i s ;
4 window . a d d E v e n t L i s t e n e r ("message" , f u n c t i o n (e v t) {
5 i f (e v t . d a t a . s l i c e (0 , 6) =="evt://")
6 t h a t . onMessage (e v t) ;
7 } , f a l s e) ;
8 }
9 MessageEven tHand le r . p r o t o t y p e . a d d E v e n t L i s t e n e r = f u n c t i o n (evtName , c a l l b a c k) {

10 i f (evtName in t h i s . l i s t e n e r s) {
11 t h i s . l i s t e n e r s [evtName] . push (c a l l b a c k) ;
12 } e l s e {
13 t h i s . l i s t e n e r s [evtName] = [c a l l b a c k] ;
14 }
15 }
16 MessageEven tHand le r . p r o t o t y p e . r e m o v e E v e n t L i s t e n e r = f u n c t i o n (evtName) {
17 i f (evtName in t h i s . l i s t e n e r s)
18 d e l e t e t h i s . l i s t e n e r s [evtName] ;
19 }
20 MessageEven tHand le r . p r o t o t y p e . onMessage = f u n c t i o n (e v t) {
21 var e v t D a t a = e v t . d a t a . s l i c e (6) ;
22 var evtName = e v t D a t a . s p l i t (’/’) [0] ;
23 i f (evtName in t h i s . l i s t e n e r s) {
24 f o r (var i =0 ; i<t h i s . l i s t e n e r s [evtName] . l e n g t h ; i ++){
25 t h i s . l i s t e n e r s [evtName] [i] (e v t D a t a) ;
26 }
27 }
28 }
29
30 var po = org . polymaps ;
31 s e s s i o n S t o r a g e . c l e a r () ;
32
33 po . s e l e c t = f u n c t i o n () {
34 var s e l e c t = {} ,
35 l a y e r s = [] ;
36
37 f u n c t i o n d i s p a t c h S e l e c t E v t (s e l e c t e v t , f e a t , t i l e) {
38 var e v t = { t y p e : ’select’ , f e a t u r e s : f e a t , t i l e : t i l e } ;
39 i f (! s e l e c t e v t) e v t . t y p e = ’unselect’ ;

123

40 f o r (var i = 0 ; i < l a y e r s . l e n g t h ; i ++)
41 l a y e r s [i] . d i s p a t c h (e v t) ;
42 } ;
43
44 f u n c t i o n h a n d l e S e l e c t i o n (e) {
45 var f e a t = s e s s i o n S t o r a g e . g e t I t e m (e . bbox) ;
46 i f (f e a t) re turn d i s p a t c h S e l e c t E v t (e . s e l e c t , e v a l (f e a t)) ;
47 $. a j a x ({
48 u r l : p roxy + ’/web_esda/userdata/features/’ ,
49 d a t a : { l a y e r s : e . l a y e r s , bbox : e . bbox } ,
50 da taType : ’json’ ,
51 s u c c e s s : f u n c t i o n (r e s , s t a t , xhr) {
52 s e s s i o n S t o r a g e . s e t I t e m (e . bbox , JSON . s t r i n g i f y (r e s . f e a t u r e s)) ;
53 d i s p a t c h S e l e c t E v t (e . s e l e c t , r e s . f e a t u r e s , e . t i l e) ;
54 }
55 }) ;
56 } ;
57
58 s e l e c t . add = f u n c t i o n (l y r) {
59 l a y e r s . push (l y r) ;
60 } ;
61
62 s e l e c t . g e t S e l e c t e d F e a t u r e = f u n c t i o n (bbox) {
63 re turn s e s s i o n S t o r a g e . g e t I t e m (bbox) ;
64 } ;
65
66 s e l e c t . r e m o v e S e l e c t e d F e a t u r e = f u n c t i o n (bbox) {
67 re turn s e s s i o n S t o r a g e . removeI tem (bbox) ;
68 } ;
69
70 s e l e c t . c l e a r S e l e c t e d F e a t u r e s = f u n c t i o n () {
71 s e s s i o n S t o r a g e . c l e a r () ;
72 } ;
73
74 s e l e c t . g e t F e a t u r e C o u n t = f u n c t i o n () {
75 re turn s e s s i o n S t o r a g e . l e n g t h ;
76 } ;
77
78 s e l e c t . d i s p a t c h = po . d i s p a t c h (s e l e c t) ;
79 s e l e c t . on ("click" , h a n d l e S e l e c t i o n) ;
80
81 re turn s e l e c t ;
82 }

A.3 Components for vector-based test application

A.3.1 Test tool
1 var r a t e m a p s = {} ;
2 var myEventObserver ;
3 var t e s t R e s u l t s = [] ;
4 var r a t e T i m e s = {"Raw_Map" : [] , "Spatial_Rate_Map" : [] } ;
5 var r a t e S t a r t T i m e s = {’Raw’ : [] , ’Spatial Rate’ : [] } ;
6 var r a t eEndTimes = {’Raw’ : [] , ’Spatial Rate’ : [] } ;
7 var r a t e T y p e s = [] ;
8 var noPans = 0 ;
9 var renderedMaps = [] ;

10 var t i l e s e t = ’’ ;
11 var even tLog = [] ;
12 var c u r r e n t T e s t O p ;
13 var e v e n t H e a d e r s = {
14 0 : ["StartToDisplayBaseTiles" ,"EndToDisplayBaseTiles" ,"StartToGetRates" ,
15 "EndToGetRates" ,"StartToClassify" ,"EndToClassify" ,"StartToRender" ,"

EndToRender"] ,

124

16 } ;
17 var t i m e H e a d e r s = {
18 0 : ["DisplayBaseTiles" ,"GetRates" ,"ClassifyRates" ,"RenderTiles"] ,
19 3 : ["DisplayBaseTiles" ,"GetRates" ,"ClassifyRates" ,"RenderTiles" ,"GetProbs" ,
20 "FilterRates" ,"RerenderTiles"] ,
21 4 : ["DisplayBaseTiles" ,"GetRates" ,"ClassifyRates" ,"RenderTiles" ,"ZoomIn" ,
22 "ZoomIn" ,"ZoomIn"] ,
23 6 : ["DisplayBaseTiles" ,"GetRates" ,"ClassifyRates" ,"RenderTiles" ,"Pan" ,"Pan" ,"

Pan"] ,
24 } ;
25 var preZoom ;
26
27 //
28 // test operations
29 //
30 f u n c t i o n drawRateMap (map , da t a , map id) {
31 var sm method = {"Raw_Map" : "Raw" , "Spatial_Rate_Map" : "Spatial Rate" } ;
32 map . i n i t (d a t a . da t a , d a t a . ev t , d a t a . pop , sm method [map id] , d a t a . wgt) ;
33 }
34
35 f u n c t i o n c h a n g e C l a s s i f i c a t i o n (map) {
36 map . i n i t T i m e = (new Date ()) . ge tTime () ;
37 var c l a s s i f i e r = $ (’#’ + map . c o n t a i n e r + ’_clsf’) ;
38 c l a s s i f i e r . v a l ("Percentile") ;
39 c l a s s i f i e r . change () ;
40 }
41
42 f u n c t i o n f i l t e r B y P r o b (map) {
43 map . i n i t T i m e = (new Date ()) . ge tTime () ;
44 var p r o b F i l t e r = $ (’#’ + map . c o n t a i n e r + ’_prob_filter’) ;
45 p r o b F i l t e r . v a l ("0.05") ;
46 p r o b F i l t e r . change () ;
47 }
48
49 f u n c t i o n zoomIn3x (map) {
50 map . i n i t T i m e = (new Date ()) . ge tTime () ;
51 even tLog . push (["Raw_Map" , "Starting to zoom in" , map . i n i t T i m e]) ;
52 map . map . zoomBy (1) ;
53 }
54
55 f u n c t i o n zoomOut3x (map) {
56 map . i n i t T i m e = (new Date ()) . ge tTime () ;
57 map . map . zoomBy(−1) ;
58 }
59
60 f u n c t i o n pan3x (map) {
61 map . i n i t T i m e = (new Date ()) . ge tTime () ;
62 even tLog . push (["Raw_Map" , "Starting to pan" , map . i n i t T i m e]) ;
63 map . map . panBy ({ x : 2 5 6 , y : 2 5 6}) ;
64 noPans = 1 ;
65 }
66
67 f u n c t i o n c e n t r o i d (c o o r d s) {
68 var a r e a = 0 . 0 ,
69 cx = 0 . 0 ,
70 cy = 0 . 0 ;
71 f o r (var i = 0 ; i < (c o o r d s . l e n g t h − 1) ; i ++){
72 var p1 = c o o r d s [i] ,
73 p2 = c o o r d s [i + 1] ;
74 var a r e a I n c = (p1 [0] * p2 [1] − p2 [0] * p1 [1]) ;
75 a r e a += a r e a I n c ;
76 cx += (p1 [0] + p2 [0]) * a r e a I n c ;
77 cy += (p1 [1] + p2 [1]) * a r e a I n c ;
78 }

125

79 cx = cx / (3 * a r e a) ;
80 cy = cy / (3 * a r e a) ;
81 re turn { l o n : cx , l a t : cy } ;
82 }
83
84 f u n c t i o n g e t T a r g e t F e a t u r e (t i l e s) {
85 var t i l e K e y s = [] ;
86 f o r (var t i l e in t i l e s) t i l e K e y s . push (t i l e) ;
87 var t a r g e t T i l e = n u l l ;
88 whi le (t a r g e t T i l e == n u l l) {
89 var a T i l e = t i l e s [t i l e K e y s [Math . f l o o r (t i l e K e y s . l e n g t h *Math . random ())]] ;
90 i f (a T i l e && a T i l e . l e n g t h > 0) t a r g e t T i l e = a T i l e ;
91 }
92 var t a r g e t F e a t = n u l l ;
93 whi le (t a r g e t F e a t == n u l l) {
94 var a F e a t = t a r g e t T i l e [Math . f l o o r (t a r g e t T i l e . l e n g t h *Math . random ())] ;
95 i f (a F e a t && a F e a t . e l e m e n t) t a r g e t F e a t = a F e a t ;
96 }
97 re turn t a r g e t F e a t ;
98 }
99

100 f u n c t i o n h i g h l i g h t P o l y I n O n e M a p (map) {
101 var t a r g e t F e a t = g e t T a r g e t F e a t u r e (map . l a y e r . t i l e s ()) ;
102 var t a r g e t F e a t L o c = c e n t r o i d (t a r g e t F e a t . d a t a . geomet ry . c o o r d i n a t e s [0]) ;
103 var t a r g e t F e a t P o i n t = map . map . l o c a t i o n P o i n t (t a r g e t F e a t L o c) ;
104 map . i n i t T i m e = (new Date ()) . ge tTime () ;
105 $ (t a r g e t F e a t . e l e m e n t) . t r i g g e r (’click’ , [t a r g e t F e a t P o i n t]) ;
106 }
107
108 f u n c t i o n l inkMaps (maps) {
109 var t a r g e t F e a t = g e t T a r g e t F e a t u r e (maps ["Raw_Map"] . l a y e r . t i l e s ()) ;
110 var t a r g e t F e a t L o c = c e n t r o i d (t a r g e t F e a t . d a t a . geomet ry . c o o r d i n a t e s [0]) ;
111 var t a r g e t F e a t P o i n t = maps ["Raw_Map"] . map . l o c a t i o n P o i n t (t a r g e t F e a t L o c) ;
112 maps ["Spatial_Rate_Map"] . i n i t T i m e = (new Date ()) . ge tTime () ;
113 $ (t a r g e t F e a t . e l e m e n t) . t r i g g e r (’click’ , [t a r g e t F e a t P o i n t]) ;
114 } ;
115
116 //
117 // utility functions
118 //
119 f u n c t i o n debug (l o g T x t) {
120 i f (window . c o n s o l e != u n d e f i n e d) {
121 c o n s o l e . l o g (l o g T x t) ;
122 } e l s e i f (o p e r a) {
123 o p e r a . p o s t E r r o r (l o g T x t) ;
124 }
125 }
126
127 f u n c t i o n avg (r e s u l t s) {
128 var sum = 0 ;
129 f o r (i = 0 ; i < r e s u l t s . l e n g t h ; i ++) {
130 sum += r e s u l t s [i] ;
131 }
132 re turn sum / r e s u l t s . l e n g t h ;
133 }
134
135 f u n c t i o n s l e e p (m i l l i s e c o n d s) {
136 var s t a r t = new Date () . ge tTime () ;
137 whi le (new Date () . ge tTime () < s t a r t + m i l l i s e c o n d s) ;
138 }
139
140 f u n c t i o n des t royMap (map) {
141 var c o n t = $ ("#" + map . c o n t a i n e r) ;
142 i f (c o n t) {

126

143 c o n t . p r ev () . remove () ;
144 c o n t . n e x t () . remove () ;
145 c o n t . remove () ;
146 }
147 i f (map . c o n t a i n e r in r a t e m a p s) {
148 map . l a y e r . cache . s i z e (0) ;
149 d e l e t e r a t e m a p s [map . c o n t a i n e r] ;
150 }
151 d e l e t e map . c o n t a i n e r ;
152 }
153
154 f u n c t i o n r e s e t E v t O b s e r v e r () {
155 myEventObserver = n u l l ;
156 }
157
158 //
159 // evaluation functions
160 //
161 f u n c t i o n s t a r t T e s t () {
162 debug (’test started’) ;
163 var t e s t O p = ge tTes tOp () ;
164 c u r r e n t T e s t O p = t e s t O p ;
165 var d a t a = g e t T e s t D a t a () ;
166 var mapSize = getMapSize () ;
167 var n o T e s t s = g e t N o T e s t s () ;
168 se tupAndRunTes t (t e s tOp , mapSize , da t a , n o T e s t s) ;
169 }
170
171 f u n c t i o n se tupAndRunTes t (t e s tOp , mapSize , da t a , n o T e s t s) {
172 t e s t R e s u l t s = [] ;
173 p r e p a r e T e s t (t e s tOp , mapSize , da t a , n o T e s t s) ;
174 p r e p a r e T e s t R u n (t e s tOp , mapSize , d a t a) ;
175 i f (t e s t O p < 2)
176 r u n T e s t (t e s tOp , d a t a) ;
177 }
178
179 f u n c t i o n a d d R e s u l t 0 (e d a t a) {
180 t e s t R e s u l t s . push (p a r s e F l o a t (e d a t a [2]) − r a t e m a p s ["Raw_Map"] . i n i t T i m e) ;
181 c o n s o l e . l o g (’time diff:’ + r a t e m a p s ["Raw_Map"] . i n i t T i m e + "-" + e d a t a [2] +
182 "=" + t e s t R e s u l t s [t e s t R e s u l t s . l e n g t h −1]) ;
183 }
184
185 f u n c t i o n a d d R e s u l t 1 (e d a t a) {
186 a d d R e s u l t 0 (e d a t a) ;
187 }
188
189 f u n c t i o n a d d R e s u l t 2 (e d a t a) {
190 t e s t R e s u l t s . push (p a r s e F l o a t (e d a t a [2]) − r a t e m a p s ["Spatial_Rate_Map"] .

i n i t T i m e) ;
191 c o n s o l e . l o g (’time diff:’ + r a t e m a p s ["Spatial_Rate_Map"] . i n i t T i m e + "-" +

e d a t a [2]
192 + "=" + t e s t R e s u l t s [t e s t R e s u l t s . l e n g t h −1]) ;
193 }
194
195 f u n c t i o n n e x t T e s t 0 (noTes t s , t e s tOp , mapSize , da t a , srcMap) {
196 i f (t e s t R e s u l t s . l e n g t h < n o T e s t s) {
197 window . s e t T i m e o u t (f u n c t i o n () {
198 p r e p a r e T e s t R u n (t e s tOp , mapSize , d a t a) ;
199 r u n T e s t (t e s tOp , d a t a) ;
200 } , 1) ;
201 }
202 e l s e i f (t e s t R e s u l t s . l e n g t h == n o T e s t s && c u r r e n t T e s t O p == 1) {
203 debug ("Avg time: " + (avg (t e s t R e s u l t s) + 1 . 0) + " ms") ;
204 var eHeader = e v e n t H e a d e r s [c u r r e n t T e s t O p − 1] ;

127

205 var t H e a d e r = t i m e H e a d e r s [c u r r e n t T e s t O p − 1] ;
206 var eHeaderLen = eHeader . l e n g t h * 2 ;
207 var tHeaderLen = t H e a d e r . l e n g t h ;
208 debug ("Response times") ;
209 f o r (var i = 0 ; i < t e s t R e s u l t s . l e n g t h ; i ++) debug (t e s t R e s u l t s [i]) ;
210 f o r (var i = 0 ; i < t e s t R e s u l t s . l e n g t h ; i ++) {
211 debug ("Test" + i) ;
212 var l = eventLog . s l i c e (i * eHeaderLen , (i +1) * eHeaderLen) ;
213 f o r (var j = 0 ; j < l . l e n g t h ; j ++){
214 debug (l [j] . j o i n (",")) ;
215 }
216 }
217 debug ("Raw_Map") ;
218 debug (t H e a d e r . j o i n (",")) ;
219 f o r (var i = 0 ; i < t e s t R e s u l t s . l e n g t h ; i ++) {
220 var l = r a t e T i m e s ["Raw_Map"] . s l i c e (i * tHeaderLen , (i +1) * tHeaderLen) ;
221 debug (l . j o i n (",")) ;
222 }
223 debug ("Spatial_Rate_Map") ;
224 debug (t H e a d e r . j o i n (",")) ;
225 f o r (var i = 0 ; i < t e s t R e s u l t s . l e n g t h ; i ++) {
226 var l = r a t e T i m e s ["Spatial_Rate_Map"] . s l i c e (i * tHeaderLen , (i +1) *

tHeaderLen) ;
227 debug (l . j o i n (",")) ;
228 }
229 }
230 e l s e i f (t e s t R e s u l t s . l e n g t h == n o T e s t s) {
231 debug ("Avg time: " + (avg (t e s t R e s u l t s) + 1 . 0) + " ms") ;
232 var eHeader = e v e n t H e a d e r s [c u r r e n t T e s t O p] ;
233 var t H e a d e r = t i m e H e a d e r s [c u r r e n t T e s t O p] ;
234 var eHeaderLen = eHeader . l e n g t h ;
235 var tHeaderLen = t H e a d e r . l e n g t h ;
236 debug ("Response times") ;
237 f o r (var i = 0 ; i < t e s t R e s u l t s . l e n g t h ; i ++) debug (t e s t R e s u l t s [i]) ;
238 f o r (var i = 0 ; i < t e s t R e s u l t s . l e n g t h ; i ++) {
239 debug ("Test" + i) ;
240 var l = eventLog . s l i c e (i * eHeaderLen , (i +1) * eHeaderLen) ;
241 f o r (var j = 0 ; j < l . l e n g t h ; j ++){
242 debug (l [j] . j o i n (",")) ;
243 }
244 }
245 debug (t H e a d e r . j o i n (",")) ;
246 f o r (var i = 0 ; i < t e s t R e s u l t s . l e n g t h ; i ++) {
247 var l = r a t e T i m e s ["Raw_Map"] . s l i c e (i * tHeaderLen , (i +1) * tHeaderLen) ;
248 debug (l . j o i n (",")) ;
249 }
250 }
251 }
252
253 f u n c t i o n n e x t T e s t 1 (noTes t s , t e s tOp , mapSize , da t a , srcMap) {
254 n e x t T e s t 0 (noTes t s , t e s tOp , mapSize , da t a , srcMap) ;
255 }
256
257 f u n c t i o n n e x t T e s t 2 (noTes t s , t e s tOp , mapSize , da t a , srcMap) {
258 i f (t e s t R e s u l t s . l e n g t h < n o T e s t s) {
259 window . s e t T i m e o u t (f u n c t i o n () {
260 p r e p a r e T e s t R u n (t e s tOp , mapSize , d a t a) ;
261 } , 1) ;
262 }
263 e l s e i f (t e s t R e s u l t s . l e n g t h == n o T e s t s && c u r r e n t T e s t O p == 3) {
264 debug ("Avg time: " + (avg (t e s t R e s u l t s) + 1 . 0) + " ms") ;
265 var t H e a d e r = t i m e H e a d e r s [c u r r e n t T e s t O p] ;
266 var eHeaderLen = 1 5 ;
267 var tHeaderLen = t H e a d e r . l e n g t h ;

128

268 debug ("Response times") ;
269 f o r (var i = 0 ; i < t e s t R e s u l t s . l e n g t h ; i ++) debug (t e s t R e s u l t s [i]) ;
270 f o r (var i = 0 ; i < t e s t R e s u l t s . l e n g t h ; i ++) {
271 debug ("Test" + i) ;
272 var l = eventLog . s l i c e (i * eHeaderLen , (i +1) * eHeaderLen) ;
273 f o r (var j = 0 ; j < l . l e n g t h ; j ++){
274 debug (l [j] . j o i n (",")) ;
275 }
276 }
277 debug (t H e a d e r . j o i n (",")) ;
278 f o r (var i = 0 ; i < t e s t R e s u l t s . l e n g t h ; i ++) {
279 var l = r a t e T i m e s ["Raw_Map"] . s l i c e (i * tHeaderLen , (i +1) * tHeaderLen) ;
280 debug (l . j o i n (",")) ;
281 }
282 }
283 e l s e i f (t e s t R e s u l t s . l e n g t h == n o T e s t s) {
284 var a d d i t i o n = 1 ;
285 i f (t e s t O p == 4 | | t e s t O p == 5 | | t e s t O p == 6) a d d i t i o n = −1.0;
286 e l s e i f (t e s t O p == 7 | | t e s t O p == 8) a d d i t i o n = 0 ;
287 debug ("Avg time: " + (avg (t e s t R e s u l t s) + a d d i t i o n) + " ms") ;
288 debug ("Response times") ;
289 f o r (var i = 0 ; i < t e s t R e s u l t s . l e n g t h ; i ++) debug (t e s t R e s u l t s [i] +

a d d i t i o n) ;
290 var t H e a d e r = t i m e H e a d e r s [c u r r e n t T e s t O p] ;
291 var eHeaderLen = 1 3 ;
292 var tHeaderLen = t H e a d e r . l e n g t h ;
293 f o r (var i = 0 ; i < t e s t R e s u l t s . l e n g t h ; i ++) {
294 debug ("Test" + i) ;
295 var l = eventLog . s l i c e (i * eHeaderLen , (i +1) * eHeaderLen) ;
296 f o r (var j = 0 ; j < l . l e n g t h ; j ++){
297 debug (l [j] . j o i n (",")) ;
298 }
299 }
300 debug (t H e a d e r . j o i n (",")) ;
301 f o r (var i = 0 ; i < t e s t R e s u l t s . l e n g t h ; i ++) {
302 var l = r a t e T i m e s ["Raw_Map"] . s l i c e (i * tHeaderLen , (i +1) * tHeaderLen) ;
303 debug (l . j o i n (",")) ;
304 }
305 }
306 }
307
308 f u n c t i o n p r e p a r e T e s t (t e s tOp , mapSize , da t a , n o T e s t s) {
309 var a d d R e s u l t = {0 : addResu l t 0 , 1 : a d d R e s u l t 1 } ;
310 var r u n N e x t T e s t = {0 : n e x t T e s t 0 , 1 : n e x t T e s t 1 , 2 : n e x t T e s t 2 } ;
311 var runTes tOp2 3 = f u n c t i o n (e v t D a t a) {
312 c o n s o l e . l o g (e v t D a t a) ;
313 var e d a t a = e v t D a t a . s p l i t (’/’) ;
314 a d d R e s u l t 0 (e d a t a) ;
315 n e x t T e s t 2 (noTes t s , t e s tOp , mapSize , d a t a) ;
316 } ;
317 var runTes tOp4 = f u n c t i o n (e v t D a t a) {
318 c o n s o l e . l o g (e v t D a t a) ;
319 var e d a t a = e v t D a t a . s p l i t (’/’) ;
320 a d d R e s u l t 2 (e d a t a) ;
321 n e x t T e s t 2 (noTes t s , t e s tOp , mapSize , d a t a) ;
322 } ;
323 i f (myEventObserver == n u l l) myEventObserver = new MessageEven tHand le r () ;
324 i f (t e s t O p == 0) {
325 myEventObserver . a d d E v e n t L i s t e n e r ("layerRendered" , f u n c t i o n (e v t D a t a) {
326 c o n s o l e . l o g (e v t D a t a) ;
327 var e d a t a = e v t D a t a . s p l i t (’/’) ;
328 a d d R e s u l t [t e s t O p] (e d a t a) ;
329 r u n N e x t T e s t [t e s t O p] (noTes t s , t e s tOp , mapSize , da t a , e d a t a [1]) ;
330 }) ;

129

331 myEventObserver . a d d E v e n t L i s t e n e r ("loadEnd" , f u n c t i o n (e v t D a t a) {
332 c o n s o l e . l o g (e v t D a t a) ;
333 var e d a t a = e v t D a t a . s p l i t (’/’) ;
334 var map type = e d a t a [1] ;
335 var loadEndTime = p a r s e I n t (e d a t a [2]) ;
336 even tLog . push ([e d a t a [1] , "EndBaseTileDisplay" , loadEndTime])
337 b a s e t i l e d i s p l a y = loadEndTime − r a t e m a p s [e d a t a [1]] . i n i t T i m e ;
338 r a t e T i m e s [e d a t a [1]] . push (b a s e t i l e d i s p l a y) ;
339 c o n s o l e . l o g (e d a t a [1] + ’:base tile display (t1-t0):’ +

b a s e t i l e d i s p l a y) ;
340 r a t e m a p s ["Raw_Map"] . s t a r t G e t t i n g R a t e s () ;
341 }) ;
342 }
343 e l s e i f (t e s t O p == 1) {
344 myEventObserver . a d d E v e n t L i s t e n e r ("layerRendered" , f u n c t i o n (e v t D a t a) {
345 c o n s o l e . l o g (e v t D a t a) ;
346 var e d a t a = e v t D a t a . s p l i t (’/’) ;
347 renderedMaps . push (e d a t a [1]) ;
348 i f (renderedMaps . l e n g t h == 2) {
349 a d d R e s u l t [t e s t O p] (e d a t a) ;
350 r u n N e x t T e s t [t e s t O p] (noTes t s , t e s tOp , mapSize , da t a , e d a t a [1]) ;
351 }
352 }) ;
353 myEventObserver . a d d E v e n t L i s t e n e r ("loadEnd" , f u n c t i o n (e v t D a t a) {
354 c o n s o l e . l o g (e v t D a t a) ;
355 var e d a t a = e v t D a t a . s p l i t (’/’) ;
356 var map type = e d a t a [1] ;
357 var loadEndTime = p a r s e I n t (e d a t a [2]) ;
358 even tLog . push ([e d a t a [1] , "EndBaseTileDisplay" , loadEndTime])
359 b a s e t i l e d i s p l a y = loadEndTime − r a t e m a p s [e d a t a [1]] . i n i t T i m e ;
360 r a t e T i m e s [e d a t a [1]] . push (b a s e t i l e d i s p l a y) ;
361 c o n s o l e . l o g (e d a t a [1] + ’:base tile display (t1-t0):’ +

b a s e t i l e d i s p l a y) ;
362 r a t e m a p s [e d a t a [1]] . s t a r t G e t t i n g R a t e s () ;
363 }) ;
364 }
365 e l s e i f (t e s t O p >= 2 && t e s t O p <= 8) {
366 i f (t e s t O p != 4 && t e s t O p != 5)
367 myEventObserver . a d d E v e n t L i s t e n e r ("loadEnd" , f u n c t i o n (e v t D a t a) {
368 c o n s o l e . l o g (e v t D a t a) ;
369 var e d a t a = e v t D a t a . s p l i t (’/’) ;
370 var loadEndTime = p a r s e I n t (e d a t a [2]) ;
371 even tLog . push ([e d a t a [1] , "EndBaseTileDisplay" , loadEndTime])
372 b a s e t i l e d i s p l a y = loadEndTime − r a t e m a p s [e d a t a [1]] . i n i t T i m e ;
373 r a t e T i m e s [e d a t a [1]] . push (b a s e t i l e d i s p l a y) ;
374 c o n s o l e . l o g (’base tile display (t1-t0):’ + b a s e t i l e d i s p l a y) ;
375 r a t e m a p s [e d a t a [1]] . s t a r t G e t t i n g R a t e s () ;
376 }) ;
377 myEventObserver . a d d E v e n t L i s t e n e r ("readyForTest" , f u n c t i o n (e v t D a t a) {
378 c o n s o l e . l o g (e v t D a t a) ;
379 var e d a t a = e v t D a t a . s p l i t (’/’) ;
380 r u n T e s t (p a r s e I n t (e d a t a [1]) , d a t a) ;
381 }) ;
382 i f (t e s t O p == 2 | | t e s t O p == 3 | | t e s t O p == 7 | | t e s t O p == 8) {
383 i f (t e s t O p != 8) {
384 myEventObserver . a d d E v e n t L i s t e n e r ("layerRendered" , f u n c t i o n (

e v t D a t a) {
385 c o n s o l e . l o g (e v t D a t a) ;
386 window . pos tMessage ("evt://readyForTest/" + S t r i n g (t e s t O p) , "

*") ;
387 }) ;
388 }
389 e l s e

130

390 myEventObserver . a d d E v e n t L i s t e n e r ("layerRendered" , f u n c t i o n (
e v t D a t a) {

391 c o n s o l e . l o g (e v t D a t a) ;
392 var e d a t a = e v t D a t a . s p l i t (’/’) ;
393 renderedMaps . push (e d a t a [1]) ;
394 i f (renderedMaps . l e n g t h == 2)
395 window . pos tMessage ("evt://readyForTest/" + S t r i n g (t e s t O p

) , "*") ;
396 }) ;
397 i f (t e s t O p == 2)
398 myEventObserver . a d d E v e n t L i s t e n e r ("classificationUpdated" ,

r unTes tOp2 3) ;
399 e l s e i f (t e s t O p == 3)
400 myEventObserver . a d d E v e n t L i s t e n e r ("filteredByProb" , r unTes tOp2 3)

;
401 e l s e i f (t e s t O p == 7)
402 myEventObserver . a d d E v e n t L i s t e n e r ("featHighlighted" , r unTes tOp2 3

) ;
403 e l s e i f (t e s t O p == 8)
404 myEventObserver . a d d E v e n t L i s t e n e r ("featHighlighted" , f u n c t i o n (

e v t D a t a) {
405 c o n s o l e . l o g (e v t D a t a) ;
406 var e d a t a = e v t D a t a . s p l i t (’/’) ;
407 i f (e d a t a [1] == "Spatial_Rate_Map")
408 runTes tOp4 (e v t D a t a) ;
409 }) ;
410 }
411 e l s e i f (t e s t O p == 4 | | t e s t O p == 5) {
412 var z o o m I n t e r v a l = t e s t O p == 5 ? −1: 1 ;
413 var evtName = t e s t O p == 5? ’zoomOut3x’ : ’zoomIn3x’ ;
414 var goalZ = t e s t O p == 5? 4 : 7 ;
415 myEventObserver . a d d E v e n t L i s t e n e r ("layerRendered" , f u n c t i o n (e v t D a t a) {
416 c o n s o l e . l o g (e v t D a t a) ;
417 c o n s o l e . l o g ("zoom level:" + r a t e m a p s ["Raw_Map"] . map . zoom ()) ;
418 preZoom = (new Date ()) . ge tTime () ;
419 myEventObserver . a d d E v e n t L i s t e n e r ("loadEnd" , f u n c t i o n (e v t D a t a) {
420 c o n s o l e . l o g (e v t D a t a) ;
421 var e d a t a = e v t D a t a . s p l i t (’/’) ;
422 i f (e d a t a . l e n g t h != 4) re turn ;
423 var curZoom = p a r s e I n t (e d a t a [2]) ;
424 even tLog . push (["Raw_Map" , "Ending to zoom in" , curZoom]) ;
425 i f (r a t e m a p s ["Raw_Map"] . map . zoom () == 5)
426 r a t e T i m e s ["Raw_Map"] . push (curZoom − preZoom) ;
427 e l s e
428 r a t e T i m e s ["Raw_Map"] . push (curZoom − preZoom − 1) ;
429 preZoom = curZoom ;
430 c o n s o l e . l o g ("zoom level:" + r a t e m a p s ["Raw_Map"] . map . zoom ())

;
431 var z = r a t e m a p s ["Raw_Map"] . map . zoom () ;
432 i f (z != goalZ) window . s e t T i m e o u t (f u n c t i o n () {
433 r a t e m a p s ["Raw_Map"] . map . r e n d e r e d = {} ;
434 even tLog . push (["Raw_Map" , "Starting to zoom in" ,
435 (new Date ()) . ge tTime ()]) ;
436 r a t e m a p s ["Raw_Map"] . map . zoomBy (z o o m I n t e r v a l) ;
437 } , 1) ;
438 e l s e {
439 var e d a t a = e v t D a t a . s p l i t (’/’) ;
440 window . pos tMessage ("evt://" + evtName + "/Raw_Map/" +
441 e d a t a [2] , "*") ;
442 }
443 }) ;
444 r u n T e s t (t e s tOp , d a t a) ;
445 }) ;
446 myEventObserver . a d d E v e n t L i s t e n e r (evtName , runTes tOp2 3) ;

131

447 }
448 e l s e i f (t e s t O p == 6) {
449 myEventObserver . a d d E v e n t L i s t e n e r ("layerRendered" , f u n c t i o n (e v t D a t a) {
450 c o n s o l e . l o g (e v t D a t a) ;
451 preZoom = (new Date ()) . ge tTime () ;
452 myEventObserver . a d d E v e n t L i s t e n e r ("loadEnd" , f u n c t i o n (e v t D a t a) {
453 c o n s o l e . l o g (e v t D a t a) ;
454 var e d a t a = e v t D a t a . s p l i t (’/’) ;
455 i f (e d a t a . l e n g t h != 4) re turn ;
456 var curZoom = p a r s e I n t (e d a t a [2]) ;
457 even tLog . push (["Raw_Map" , "Ending to pan" , curZoom]) ;
458 i f (noPans == 0)
459 r a t e T i m e s ["Raw_Map"] . push (curZoom − preZoom) ;
460 e l s e
461 r a t e T i m e s ["Raw_Map"] . push (curZoom − preZoom − 1) ;
462 preZoom = curZoom ;
463 i f (noPans != 3) window . s e t T i m e o u t (f u n c t i o n () {
464 r a t e m a p s ["Raw_Map"] . map . r e n d e r e d = {} ;
465 even tLog . push (["Raw_Map" , "Starting to pan" ,
466 (new Date ()) . ge tTime ()]) ;
467 r a t e m a p s ["Raw_Map"] . map . panBy ({ x : 2 5 6 , y : 2 5 6}) ;
468 noPans += 1 ;
469 } , 1) ;
470 e l s e {
471 var e d a t a = e v t D a t a . s p l i t (’/’) ;
472 window . pos tMessage ("evt://pan3x/Raw_Map/" + e d a t a [2] , "*

") ;
473 }
474 }) ;
475 r u n T e s t (t e s tOp , d a t a) ;
476 }) ;
477 myEventObserver . a d d E v e n t L i s t e n e r ("pan3x" , r unTes tOp2 3) ;
478 }
479 }
480 }
481
482 f u n c t i o n p r e p a r e T e s t R u n (t e s tOp , mapSize , d a t a) {
483 var o r i g T e s t O p = t e s t O p ;
484 i f (t e s t O p >= 2 && t e s t O p <= 7) t e s t O p = 0 ;
485 e l s e i f (t e s t O p == 8) t e s t O p = 1 ;
486 var z = (o r i g T e s t O p == 5 | | o r i g T e s t O p == 6) ? 7 : 4 ;
487 i f (t e s t O p == 0 | | t e s t O p == 1) {
488 var map ids = ["Raw_Map"] ;
489 i f (t e s t O p == 1) map ids . push ("Spatial_Rate_Map") ;
490 f o r (var i = 0 ; i < map ids . l e n g t h ; i ++){
491 var map id = map ids [i] ;
492 i f (map id in r a t e m a p s) des t royMap (r a t e m a p s [map id]) ;
493 var c l s f = {
494 method : ’Quantile’ ,
495 n o c l s : 5 ,
496 c o l o r s c h e m e : ’Blues’
497 } ;
498 r a t e m a p s [map id] = new RateMap (map id , mapSize , nul l , z , nul l , c l s f

) ;
499 }
500 i f (t e s t O p == 1) renderedMaps = [] ;
501 }
502 i f (o r i g T e s t O p >= 2 && o r i g T e s t O p <= 7) {
503 i f (o r i g T e s t O p == 4 | | o r i g T e s t O p == 5 | | o r i g T e s t O p == 6)
504 myEventObserver . r e m o v e E v e n t L i s t e n e r ("loadEnd") ;
505 drawRateMap (r a t e m a p s ["Raw_Map"] , da t a , "Raw_Map") ;
506 i f (o r i g T e s t O p == 4 | | o r i g T e s t O p == 6) {
507 var t = (new Date ()) . ge tTime () ;
508 r a t e T i m e s ["Raw_Map"] . push (t − r a t e m a p s ["Raw_Map"] . i n i t T i m e) ;

132

509 r a t e m a p s ["Raw_Map"] . s t a r t G e t t i n g R a t e s () ;
510 }
511 }
512 e l s e i f (o r i g T e s t O p == 8) {
513 renderedMaps = [] ;
514 f o r (var map id in r a t e m a p s)
515 drawRateMap (r a t e m a p s [map id] , da t a , map id) ;
516 }
517 }
518
519 f u n c t i o n r u n T e s t (t e s tOp , d a t a) {
520 c o n s o l e . l o g (’runTest’ + t e s t O p) ;
521 var f unc = g e t T e s t F u n c t i o n (t e s t O p) ;
522 i f (t e s t O p == 0 | | t e s t O p == 1) {
523 var map ids = ["Raw_Map"] ;
524 i f (t e s t O p == 1) map ids . push ("Spatial_Rate_Map") ;
525 f o r (var i = 0 ; i < map ids . l e n g t h ; i ++){
526 var map id = map ids [i] ;
527 f unc (r a t e m a p s [map id] , da t a , map id) ;
528 }
529 re turn true ;
530 }
531 e l s e i f (t e s t O p >= 2 && t e s t O p <= 7) {
532 c o n s o l e . l o g (’test operation ’ + t e s t O p + ’ starts ..’) ;
533 f unc (r a t e m a p s ["Raw_Map"] , da t a , "Raw_Map") ;
534 }
535 e l s e i f (t e s t O p == 8) {
536 c o n s o l e . l o g (’test operation ’ + t e s t O p + ’ starts ..’) ;
537 f unc (r a t e m a p s) ;
538 }
539 }
540
541 f u n c t i o n ge tTes tOp () {
542 re turn document . forms ["options"] . t e s t o p e r a t i o n . s e l e c t e d I n d e x ;
543 }
544
545 f u n c t i o n g e t T e s t F u n c t i o n (op) {
546 i f (op == 0 | | op == 1) re turn drawRateMap ;
547 e l s e i f (op == 2) re turn c h a n g e C l a s s i f i c a t i o n ;
548 e l s e i f (op == 3) re turn f i l t e r B y P r o b ;
549 e l s e i f (op == 4) re turn zoomIn3x ;
550 e l s e i f (op == 5) re turn zoomOut3x ;
551 e l s e i f (op == 6) re turn pan3x ;
552 e l s e i f (op == 7) re turn h i g h l i g h t P o l y I n O n e M a p ;
553 e l s e i f (op == 8) re turn l inkMaps ;
554 }
555
556 f u n c t i o n g e t T e s t D a t a () {
557 var mapdata = document . forms ["options"] . d a t a . s e l e c t e d I n d e x ;
558 i f (mapdata == 0) {
559 t i l e s e t = ’counties’ ;
560 re turn { d a t a : ’unemployment_2009_main_’ , e v t : ’UNEMP’ , pop : ’POP1’ ,
561 wgt : ’unemployment_2009_main.gal’ } ;
562 }
563 e l s e i f (mapdata == 1) {
564 t i l e s e t = ’pcsa’ ;
565 re turn { d a t a : ’pcsa_mainland_’ , e v t : ’SUM_Sum_AG’ , pop : ’SUM_Sum_PO’ ,
566 wgt : ’pcsa_mainland_q1.gal’ } ;
567 }
568 e l s e i f (mapdata == 2) {
569 t i l e s e t = ’sd’ ;
570 re turn { d a t a : ’sd_from_tracts_’ , e v t : ’SUM_AGE_65’ , pop : ’SUM_POP200’ ,
571 wgt : ’sd_from_tracts_q1.gal’ } ;
572 }

133

573 e l s e i f (mapdata == 3) {
574 t i l e s e t = ’zip’ ;
575 re turn { d a t a : ’usps_zip_’ , e v t : ’Over_65’ , pop : ’Sum_POP200’ ,
576 wgt : ’zip_mainland_q1.gal’ } ;
577 }
578 e l s e i f (mapdata == 4) {
579 t i l e s e t = ’tracts’ ;
580 re turn { d a t a : ’tracts_’ , e v t : ’AGE_65_UP’ , pop : ’POP2000’ ,
581 wgt : ’tracts_q1.gal’ } ;
582 }
583 re turn n u l l ;
584 }
585
586 f u n c t i o n getMapSize () {
587 var r e s = {wid th : nul l , h e i g h t : n u l l } ;
588 var m a p s i z e i n x = document . forms ["options"] . maps ize . s e l e c t e d I n d e x ;
589 i f (m a p s i z e i n x == 0) {
590 r e s . w id th = 400 ;
591 r e s . h e i g h t = 200 ;
592 } e l s e i f (m a p s i z e i n x == 1) {
593 r e s . w id th = 800 ;
594 r e s . h e i g h t = 400 ;
595 } e l s e i f (m a p s i z e i n x == 2) {
596 r e s . w id th = 1200 ;
597 r e s . h e i g h t = 600 ;
598 } e l s e {
599 r e s . w id th = 1600 ;
600 r e s . h e i g h t = 800 ;
601 }
602 re turn r e s ;
603 }
604
605 f u n c t i o n g e t N o T e s t s () {
606 re turn p a r s e I n t (document . forms ["options"] . n o t e s t s . v a l u e) ;
607 }

A.3.2 Map component
1 var po = org . polymaps ;
2
3 f u n c t i o n RateMap (c o n t a i n e r , s i z e , c e n t e r , zoom , zoomRange , c l a s s i f i c a t i o n) {
4 t h i s . c o n t a i n e r = c o n t a i n e r ;
5 t h i s . c o n t r o l l e r = t h i s . c o n t a i n e r + ’_controller’ ;
6 t h i s . map = n u l l ;
7 t h i s . w id th = 800 ;
8 t h i s . h e i g h t = 400 ;
9 t h i s . mapClass = "map_800_400" ;

10 i f (s i z e != n u l l) {
11 t h i s . w id th = s i z e . wid th ;
12 t h i s . h e i g h t = s i z e . h e i g h t ;
13 t h i s . mapClass = "map_" + S t r i n g (t h i s . w id th) + "_" + S t r i n g (t h i s . h e i g h t) ;
14 }
15 i f ($ ("#" + c o n t a i n e r) . l e n g t h == 0) {
16 $ ("body") . append (’
<div id="’ + c o n t a i n e r + ’" class="’ + t h i s .

mapClass
17 + ’"></div>
’) ;
18 }
19 t h i s . c e n t e r = { l a t : 39 , l o n : −96};
20 i f (c e n t e r != n u l l) t h i s . c e n t e r = c e n t e r ;
21 t h i s . zoom = 4 ;
22 i f (zoom != n u l l) t h i s . zoom = zoom ;
23 t h i s . zoomRange = [3 , 7] ;
24 i f (zoomRange != n u l l) t h i s . zoomRange = zoomRange ;
25 t h i s . c l a s s i f i c a t i o n = ’Quantile’ ;

134

26 i f (’method’ in c l a s s i f i c a t i o n)
27 t h i s . c l a s s i f i c a t i o n = c l a s s i f i c a t i o n . method ;
28 t h i s . n o c l s = 5 ;
29 i f (’nocls’ in c l a s s i f i c a t i o n)
30 t h i s . n o c l s = c l a s s i f i c a t i o n . n o c l s ;
31 t h i s . c o l o r s c h e m e = "Blues" ;
32 i f (’colorscheme’ in c l a s s i f i c a t i o n)
33 t h i s . c o l o r s c h e m e = c l a s s i f i c a t i o n . c o l o r s c h e m e ;
34 t h i s . qs = n u l l ;
35 t h i s . l a y e r = n u l l ;
36 t h i s . r a t e s = n u l l ;
37 t h i s . p r o b a b i l i t i e s = n u l l ;
38 t h i s . t i l e s = n u l l ;
39 t h i s . s e l e c t i o n s = {} ;
40 t h i s . f i l t e r e d = {} ;
41 t h i s . c l a s s e s = n u l l ;
42 t h i s . l e g e n d = n u l l ;
43 t h i s . i n i t T i m e = n u l l ;
44 t h i s . r e n d e r e d = {} ;
45 t h i s . c l a s s i d s = {} ;
46 }
47
48 RateMap . p r o t o t y p e = {
49
50 draw map : f u n c t i o n () {
51 i f (t h i s . map != n u l l) re turn ;
52
53 t h i s . map = po . map ()
54 . s i z e ({ x : t h i s . width , y : t h i s . h e i g h t })
55 . c o n t a i n e r (document . ge tE lemen tById (t h i s . c o n t a i n e r) .
56 appendCh i ld (po . svg ("svg")))
57 . c e n t e r (t h i s . c e n t e r)
58 . zoom (t h i s . zoom)
59 . zoomRange (t h i s . zoomRange)
60 . add (po . i n t e r a c t ()) ;
61
62 var pMap = t h i s ;
63 t h i s . l a y e r = po . geoJson ()
64 . u r l ("http://129.219.93.206/tileservice/vector/" + t i l e s e t + "/{Z

}/{X}/{Y}.json")
65 . on ("load" , f u n c t i o n (t) {
66 pMap . r e n d e r e d [t . t i l e . key] = t rue ;
67 var a l l r e n d e r e d = t rue ;
68 f o r (var l o c k in pMap . l a y e r . cache . l o c k s ()) {
69 i f (! (l o c k in pMap . r e n d e r e d)) {
70 a l l r e n d e r e d = f a l s e ;
71 break ;
72 }
73 }
74 i f (a l l r e n d e r e d) {
75 window . pos tMessage ("evt://loadEnd/" + pMap .

c o n t a i n e r + "/"
76 + S t r i n g ((new Date ()) . ge tTime ()) , "*") ;
77 }
78 })
79 . i d ("county") ;
80
81 t h i s . map . add (t h i s . l a y e r) ;
82 t h i s . map . add (po . compass () . pan ("none")) ;
83 t h i s . a d d c o n t r o l l e r () ;
84 t h i s . a d d l e g e n d () ;
85 t h i s . a d d p r o b f i l t e r () ;
86 t h i s . a d d m a p c l a s s i f i e r () ;
87 t h i s . s e t c o l o r s c h e m e (t h i s . c o l o r s c h e m e) ;

135

88 } ,
89
90 a d d c o n t r o l l e r : f u n c t i o n () {
91 var m a p c o n t a i n e r = $ ("#" + t h i s . c o n t a i n e r) ;
92 m a p c o n t a i n e r . append (’<div id="’ + t h i s . c o n t r o l l e r + ’" class="

controller"></div>’) ;
93 $ (’#’ + t h i s . c o n t r o l l e r) . c s s ("left" , t h i s . w id th) ;
94 } ,
95
96 a d d p r o b f i l t e r : f u n c t i o n () {
97 var m a p c o n t r o l l e r = $ ("#" + t h i s . c o n t r o l l e r) ;
98 t h i s . p r o b f i l t e r = t h i s . c o n t a i n e r + ’_prob_filter’ ;
99 var p r o b f i l t e r =

100 ’<div class="prob_filter"><p>Probability Filter </p><select id="’ +
101 t h i s . p r o b f i l t e r + ’">’ ;
102 p r o b f i l t e r += ’<option value="1">None</option>’ ;
103 p r o b f i l t e r += ’<option value="0.1">0.1</option>’ ;
104 p r o b f i l t e r += ’<option value="0.05">0.05</option>’ ;
105 p r o b f i l t e r += ’<option value="0.01">0.01</option>’ ;
106 p r o b f i l t e r += ’</select>’ ;
107 m a p c o n t r o l l e r . append (p r o b f i l t e r) ;
108 var t h i s m a p = t h i s ;
109 $ (’#’ + t h i s . p r o b f i l t e r) . change (f u n c t i o n () {
110 i f (t h i s m a p . p r o b a b i l i t i e s != n u l l) {
111 t h i s m a p . f i l t e r R a t e M a p (n u l l) ;
112 re turn ;
113 }
114 var qs = t h i s m a p . qs ;
115 qs [’s_method’] = ’Choynowski’ ;
116 var t 1 = (new Date ()) . ge tTime () ;
117 c o n s o l e . l o g (t h i s m a p . c o n t a i n e r + ":Starting to get probabilities:" +

t 1) ;
118 even tLog . push ([t h i s m a p . c o n t a i n e r , "StartToGetProb" , t 1]) ;
119 $. a j a x (
120 { u r l : ’http://129.219.93.206/web_esda/service_proxy/smoothing/’ ,
121 d a t a : qs ,
122 da taType : ’jsonp’ ,
123 s u c c e s s : f u n c t i o n (r e s , s t a t , xhr) {
124 var t 2 = (new Date ()) . ge tTime () ;
125 c o n s o l e . l o g (t h i s m a p . c o n t a i n e r + ":Ending to get

probabilities:" + t 2) ;
126 even tLog . push ([t h i s m a p . c o n t a i n e r , "EndToGetProb" , t 2]) ;
127 r a t e T i m e s [t h i s m a p . c o n t a i n e r] . push (t 2 − t 1) ;
128 t h i s m a p . f i l t e r R a t e M a p (r e s , s t a t , xhr) ;
129 }
130 }
131) ;
132 }) ;
133 } ,
134
135 a d d m a p c l a s s i f i e r : f u n c t i o n () {
136 var m a p c o n t r o l l e r = $ (’#’ + t h i s . c o n t r o l l e r) ;
137 t h i s . c l a s s i f i c a t i o n t o o l = t h i s . c o n t a i n e r + ’_classification’ ;
138 m a p c o n t r o l l e r . append (’<div class="classification_tool" id="’ +
139 t h i s . c l a s s i f i c a t i o n t o o l + ’"><p>Map Classification </p></div>’) ;
140 var c l a s s i f i c a t i o n t o o l = $ (’#’ + t h i s . c l a s s i f i c a t i o n t o o l) ;
141 c l a s s i f i c a t i o n t o o l . append ($ (’#classification_selector’) . c l o n e () .
142 a t t r (’id’ , t h i s . c o n t a i n e r + ’_clsf’) . show ()) ;
143 c l a s s i f i c a t i o n t o o l . append (’
’) ;
144 c l a s s i f i c a t i o n t o o l . append ($ (’#noclass_selector’) . c l o n e () .
145 a t t r (’id’ , t h i s . c o n t a i n e r + ’_nocls’) . show ()) ;
146 c l a s s i f i c a t i o n t o o l . append (’
’) ;
147 c l a s s i f i c a t i o n t o o l . append ($ (’#colorscheme_selector’) . c l o n e () .
148 a t t r (’id’ , t h i s . c o n t a i n e r + ’_color’) . show ()) ;

136

149 var t h i s m a p = t h i s ;
150 $ (’#’ + t h i s . c o n t a i n e r + ’_clsf’) . change (f u n c t i o n () {
151 var c l s f = {method : $ (t h i s) . v a l () , n o c l s : t h i s m a p . n o c l s ,
152 c o l o r s c h e m e : t h i s m a p . c o l o r s c h e m e } ;
153 t h i s m a p . u p d a t e c l a s s i f i c a t i o n (c l s f) ;
154 }) ;
155 $ (’#’ + t h i s . c o n t a i n e r + ’_nocls’) . change (f u n c t i o n () {
156 var c l s f = {method : t h i s m a p . c l a s s i f i c a t i o n , n o c l s : $ (t h i s) . v a l () ,
157 c o l o r s c h e m e : t h i s m a p . c o l o r s c h e m e } ;
158 t h i s m a p . u p d a t e c l a s s i f i c a t i o n (c l s f) ;
159 }) ;
160 $ (’#’ + t h i s . c o n t a i n e r + ’_color’) . change (f u n c t i o n () {
161 var c l s f = {method : t h i s m a p . c l a s s i f i c a t i o n , n o c l s : t h i s m a p . n o c l s ,
162 c o l o r s c h e m e : $ (t h i s) . v a l () } ;
163 t h i s m a p . u p d a t e c l a s s i f i c a t i o n (c l s f) ;
164 }) ;
165 } ,
166
167 a d d l e g e n d : f u n c t i o n () {
168 var m a p c o n t r o l l e r = $ ("#" + t h i s . c o n t r o l l e r) ;
169 t h i s . l e g e n d = t h i s . c o n t a i n e r + ’_legend’ ;
170 m a p c o n t r o l l e r . append (’<div class="legend_button"><p>Legend </p><div id="

’ +
171 t h i s . l e g e n d + ’" class="legend_content"></div></div>’) ;
172 } ,
173
174 s e t c o l o r s c h e m e : f u n c t i o n (c s) {
175 t h i s . c o l o r s c h e m e = cs ;
176 t h i s . map . c o n t a i n e r () . s e t A t t r i b u t e ("class" , t h i s . c o l o r s c h e m e) ;
177 i f (t h i s . c l a s s e s != n u l l)
178 t h i s . s e t L e g e n d () ;
179 } ,
180
181 u p d a t e c l a s s i f i c a t i o n : f u n c t i o n (c l s f) {
182 i f (t h i s . c o l o r s c h e m e != c l s f . c o l o r s c h e m e)
183 t h i s . s e t c o l o r s c h e m e (c l s f . c o l o r s c h e m e) ;
184 i f (t h i s . c l a s s i f i c a t i o n != c l s f . method | | t h i s . n o c l s != c l s f . n o c l s) {
185 t h i s . c l a s s i f i c a t i o n = c l s f . method ;
186 t h i s . n o c l s = c l s f . n o c l s ;
187 t h i s . c l a s s i f y R a t e s () ;
188 var t 1 = (new Date ()) . ge tTime () ;
189 t h i s . r enderRateMap (’classificationUpdated’) ;
190 c o n s o l e . l o g (’renderRateMap.’ + ((new Date ()) . ge tTime () − t 1)) ;
191 }
192 } ,
193
194 getClsName : f u n c t i o n (v a l) {
195 re turn "q" + t h i s . c l a s s i d s [v a l] + "-" + t h i s . c l a s s e s . g e t n () ;
196 } ,
197
198 g e t c l a s s i d s : f u n c t i o n () {
199 f o r (var r in t h i s . r a t e s) {
200 var r v a l u e = t h i s . r a t e s [r] ;
201 i f (t h i s . p r o b a b i l i t i e s != n u l l && t h i s . p r o b a b i l i t i e s [r] > t h i s .

p r o b t h r e s h o l d)
202 t h i s . c l a s s i d s [r v a l u e] = 0 ;
203 e l s e {
204 t h i s . c l a s s i d s [r v a l u e] = t h i s . c l a s s e s (r v a l u e) ;
205 }
206 }
207 } ,
208
209 s e t L e g e n d : f u n c t i o n () {
210 var l e g e n d c o n t e n t = $ ("#" + t h i s . l e g e n d) ;

137

211 l e g e n d c o n t e n t . empty () ;
212 var c s s = document . s t y l e S h e e t s [0] . c s s R u l e s [1] . s t y l e S h e e t . c s s R u l e s ;
213 var c o l o r s = {} ;
214 f o r (var i = 0 ; i < c s s . l e n g t h ; i ++){
215 i f (c s s [i] . s e l e c t o r T e x t . toLowerCase () . indexOf ("." +
216 t h i s . c o l o r s c h e m e . toLowerCase ()) != −1){
217 c o l o r s [c s s [i] . s e l e c t o r T e x t . toLowerCase ()] =
218 c s s [i] . s t y l e . c s s T e x t . s u b s t r i n g (6) ;
219 }
220 }
221 var b r e a k p o i n t s = t h i s . c l a s s e s . g e t q () ,
222 n = t h i s . c l a s s e s . g e t n () ;
223 f o r (var i = 0 ; i < b r e a k p o i n t s . l e n g t h − 1 ; i ++){
224 var c l s = "q" + i + "-" + n ;
225 var c o l o r = c o l o r s ["." + t h i s . c o l o r s c h e m e . toLowerCase () + " ." + c l s

] ;
226 var c l a s s I t e m = ’<span style="background: ’ + c o l o r +
227 ’;"> ’ ;
228 c l a s s I t e m += b r e a k p o i n t s [i] . t o P r e c i s i o n (3) . t o S t r i n g () + ’ ~ ’ +
229 b r e a k p o i n t s [i + 1] . t o P r e c i s i o n (3) . t o S t r i n g () ;
230 c l a s s I t e m += ’
’ ;
231 l e g e n d c o n t e n t . append (c l a s s I t e m) ;
232 }
233 } ,
234
235 c l a s s i f y R a t e s : f u n c t i o n () {
236 i f (t h i s . c l a s s i f i c a t i o n == ’Quantile’)
237 t h i s . c l a s s e s = pv . S c a l e . m a p q u a n t i l e () . i n t e r v a l s (t h i s . n o c l s) ;
238 e l s e i f (t h i s . c l a s s i f i c a t i o n == ’Percentile’)
239 t h i s . c l a s s e s = pv . S c a l e . p e r c e n t i l e () . i n t e r v a l s () ;
240 e l s e i f (t h i s . c l a s s i f i c a t i o n == ’Boxmap’)
241 t h i s . c l a s s e s = pv . S c a l e . boxmap () . i n t e r v a l s () ;
242 e l s e i f (t h i s . c l a s s i f i c a t i o n == ’Equal_Interval’)
243 t h i s . c l a s s e s = pv . S c a l e . e q u a l i n t e r v a l () . i n t e r v a l s (t h i s . n o c l s) ;
244 t h i s . c l a s s e s . domain (pv . v a l u e s (t h i s . r a t e s)) . r a n g e () ;
245 t h i s . s e t L e g e n d () ;
246 } ,
247
248 c h a n g e F e a t u r e B o u n d a r y C o l o r : f u n c t i o n () {
249 var pMap = t h i s ;
250 re turn f u n c t i o n (ev t , p n t) {
251 var e l m i d = e v t . t a r g e t . g e t A t t r i b u t e ("id") ;
252 var sep = e l m i d . indexOf (’/’) ;
253 e l m i d = e l m i d . s l i c e (sep − 1) ;
254 var e lm meta = e l m i d . s p l i t ("_") ;
255 var e l m t i l e = e lm meta [0] . s p l i t ("/") ;
256 var z = e l m t i l e [0] ;
257 var column = p a r s e I n t (e l m t i l e [1]) ;
258 var row = p a r s e I n t (e l m t i l e [2]) ;
259 i f (pMap . t i l e s == n u l l) pMap . t i l e s = pMap . l a y e r . t i l e s () ;
260 var t o H i g h l i g h t = [e v t . t a r g e t] ;
261 var t a r g e t E l e m e n t = $ ("#" + pMap . c o n t a i n e r) ;
262 f o r (var i = column − 1 ; i <= column + 1 ; i ++){
263 i f (i < 0) c o n t i n u e ;
264 f o r (var j = row − 1 ; j <= row + 1 ; j ++){
265 i f (j < 0) c o n t i n u e ;
266 var s e a r c h t i l e = [z , i , j] . j o i n ("/") ;
267 i f (s e a r c h t i l e != e lm meta [0]) {
268 var s = t a r g e t E l e m e n t . f i n d (’path[id=’ + pMap . c o n t a i n e r +

’_’ +
269 s e a r c h t i l e + "_" + elm meta [1] + "]") ;
270 i f (s . l e n g t h == 1) t o H i g h l i g h t . push (s [0]) ;
271 }
272 }

138

273 }
274 f o r (var i = 0 ; i < t o H i g h l i g h t . l e n g t h ; i ++)
275 pMap . h i g h l i g h t F e a t u r e (t o H i g h l i g h t [i] , t o H i g h l i g h t [i] .

g e t A t t r i b u t e ("class")) ;
276
277 window . pos tMessage ("evt://featHighlighted/" + pMap . c o n t a i n e r + "/" +
278 S t r i n g ((new Date ()) . ge tTime ()) , "*") ;
279
280 i f ((e v t . l a ye r X != n u l l && e v t . l ay e rY != n u l l) | | p n t) {
281 var ev tLa tLng = n u l l ;
282 i f (p n t) ev tLa tLng = pMap . map . p o i n t L o c a t i o n (p n t) ;
283 e l s e ev tLa tLng = pMap . map . p o i n t L o c a t i o n ({ x : e v t . layerX , y : e v t .

l ay e r Y }) ;
284 var e l m i d = t o H i g h l i g h t [0] . g e t A t t r i b u t e ("id") ,
285 c u r c l a s s = t o H i g h l i g h t [0] . g e t A t t r i b u t e ("class") ,
286 sep = e l m i d . indexOf (’/’) ;
287 window . pos tMessage ("evt://highlightFeature/"+ e l m i d . s l i c e (0 , sep

−2) + "/"
288 + S t r i n g (ev tLa tLng . l a t) + "/" + S t r i n g (ev tLa tLng . l o n) + "/" +

c u r c l a s s +
289 "/" + e l m i d . s l i c e (sep −1) . r e p l a c e (/ \ //g, ’_’), "*");
290 }
291 } ;
292 } ,
293
294 h i g h l i g h t F e a t u r e : f u n c t i o n (f e a t , r e f c l a s s) {
295 var c u r c l a s s = f e a t . g e t A t t r i b u t e ("class") ,
296 r e f s e l e c t e d = r e f c l a s s . s e a r c h (’selected’) ,
297 c u r s e l e c t e d = c u r c l a s s . s e a r c h (’selected’) ,
298 f e a t i d = f e a t . g e t A t t r i b u t e ("id") . s p l i t ("_") . pop () ;
299 i f (r e f s e l e c t e d == −1 && c u r s e l e c t e d == −1) {
300 t h i s . s e l e c t i o n s [f e a t i d] = t rue ;
301 f e a t . s e t A t t r i b u t e ("class" , c u r c l a s s + " " + "selected") ;
302 }
303 e l s e i f (r e f s e l e c t e d != −1 && c u r s e l e c t e d != −1){
304 d e l e t e t h i s . s e l e c t i o n s [f e a t i d] ;
305 f e a t . s e t A t t r i b u t e ("class" , c u r c l a s s . s p l i t (" ") [0]) ;
306 }
307 } ,
308
309 l o a d : f u n c t i o n () {
310 var pMap = t h i s ;
311 re turn f u n c t i o n (e) {
312 f o r (var i = 0 ; i < e . f e a t u r e s . l e n g t h ; i ++) {
313 var f e a t u r e = e . f e a t u r e s [i] ;
314 var f e a t i d = f e a t u r e . d a t a . i d ;
315 i f (f e a t i d in pMap . r a t e s) {
316 var f i d = pMap . c o n t a i n e r + ’_’ + e . t i l e . key + ’_’ + f e a t i d ;
317 i f (f e a t u r e . e l e m e n t . g e t A t t r i b u t e ("id") != f i d)
318 f e a t u r e . e l e m e n t . s e t A t t r i b u t e ("id" , pMap . c o n t a i n e r + ’_’

+
319 e . t i l e . key + ’_’ + f e a t i d) ;
320 i f (f e a t i d in pMap . f i l t e r e d) f e a t u r e . e l e m e n t .

r e m o v e A t t r i b u t e ("class") ;
321 e l s e {
322 var c l s = pMap . getClsName (pMap . r a t e s [f e a t i d]) ;
323 i f (f e a t i d in pMap . s e l e c t i o n s) c l s += " selected" ;
324 f e a t u r e . e l e m e n t . s e t A t t r i b u t e ("class" , c l s) ;
325 }
326 f e a t u r e . e l e m e n t . appendCh i ld (po . svg ("title") . appendCh i ld (
327 document . c r e a t e T e x t N o d e (f e a t i d + ": " + pMap . r a t e s [

f e a t i d]))
328 . pa ren tNode) ;
329 $ (f e a t u r e . e l e m e n t) . c l i c k (pMap . c h a n g e F e a t u r e B o u n d a r y C o l o r ()) ;

139

330 }
331 }
332 i f (e . t y p e == ’load’) {
333 pMap . r e n d e r e d [e . t i l e . key] = t rue ;
334 var t i l e s = pMap . l a y e r . c u r t i l e s () ;
335 var z = pMap . map . zoom () ;
336 var r e n d e r e d = t rue ;
337 f o r (var t i l e in t i l e s) {
338 i f (t i l e [0] != S t r i n g (z)) c o n t i n u e ;
339 i f (! (t i l e in pMap . r e n d e r e d)) {
340 r e n d e r e d = f a l s e ;
341 break ;
342 }
343 }
344 i f (r e n d e r e d) {
345 window . pos tMessage ("evt://loadEnd/" + pMap . c o n t a i n e r + "/" +
346 S t r i n g ((new Date ()) . ge tTime ()) + "/361" , "*") ;
347 }
348 }
349 } ;
350 } ,
351
352 f i l t e r R a t e M a p : f u n c t i o n (r e s , s t a t , xhr) {
353 var t 0 = (new Date ()) . ge tTime () ;
354 c o n s o l e . l o g (t h i s . c o n t a i n e r + ":Starting to filter rates:" + t 0) ;
355 even tLog . push ([t h i s . c o n t a i n e r , "StartToFilter" , t 0]) ;
356 i f (r e s != n u l l) t h i s . p r o b a b i l i t i e s = r e s . d a t a ;
357 t h i s . t i l e s = t h i s . l a y e r . t i l e s () ;
358 i f (t h i s . t i l e s == n u l l | | t h i s . p r o b a b i l i t i e s == n u l l | | t h i s . r a t e s ==

n u l l) re turn ;
359 var t h r e s h o l d = $ ("#" + t h i s . p r o b f i l t e r) . v a l () ;
360 t h i s . g e t c l a s s i d s () ;
361 var t 1 = (new Date ()) . ge tTime () ;
362 c o n s o l e . l o g (t h i s . c o n t a i n e r + ":Ending to filter rates:" + t 1) ;
363 even tLog . push ([t h i s . c o n t a i n e r , "EndToFilter" , t 1]) ;
364 r a t e T i m e s [t h i s . c o n t a i n e r] . push (t 1 − t 0) ;
365 var t 2 = (new Date ()) . ge tTime () ;
366 c o n s o l e . l o g (t h i s . c o n t a i n e r + ":Starting to render:" + t 2) ;
367 even tLog . push ([t h i s . c o n t a i n e r , "StartToRender" , t 2]) ;
368 f o r (var t i l e in t h i s . t i l e s) {
369 var f e a t s = t h i s . t i l e s [t i l e] ;
370 f o r (var f e a t in f e a t s) {
371 var f e a t i d = f e a t s [f e a t] . d a t a . i d ;
372 var c l s i d = t h i s . c l a s s i d s [t h i s . r a t e s [f e a t i d]] ;
373 i f (c l s i d == 0) {
374 t h i s . f i l t e r e d [f e a t i d] = t rue ;
375 f e a t s [f e a t] . e l e m e n t . r e m o v e A t t r i b u t e ("class") ;
376 }
377 e l s e {
378 var c l s = t h i s . getClsName (t h i s . r a t e s [f e a t i d]) ;
379 d e l e t e t h i s . f i l t e r e d [f e a t i d] ;
380 f e a t s [f e a t] . e l e m e n t . s e t A t t r i b u t e ("class" , c l s) ;
381 }
382 }
383 }
384 var t 3 = (new Date ()) . ge tTime () ;
385 c o n s o l e . l o g (t h i s . c o n t a i n e r + ":Ending to render:" + t 3) ;
386 even tLog . push ([t h i s . c o n t a i n e r , "EndToRender" , t 3]) ;
387 r a t e T i m e s [t h i s . c o n t a i n e r] . push (t 3 − t 2) ;
388 window . pos tMessage ("evt://filteredByProb/"+ t h i s . c o n t a i n e r + "/" +
389 S t r i n g ((new Date ()) . ge tTime ()) , "*") ;
390 } ,
391
392 renderRateMap : f u n c t i o n (r e s , s t a t , xhr) {

140

393 var l oadFunc = t h i s . l o a d () ;
394 i f (r e s != n u l l && t y p e o f r e s != "string") {
395 t h i s . r a t e s = r e s . d a t a ;
396 t h i s . l a y e r . on (’load’ , l oadFunc) ;
397 t h i s . l a y e r . on (’show’ , l oadFunc) ;
398 }
399 t h i s . t i l e s = t h i s . l a y e r . t i l e s () ;
400 i f (t h i s . t i l e s == n u l l | | t h i s . r a t e s == n u l l) re turn ;
401 var t 0 = (new Date ()) . ge tTime () ;
402 c o n s o l e . l o g (t h i s . c o n t a i n e r + ":Starting to classfy rates:" + t 0) ;
403 even tLog . push ([t h i s . c o n t a i n e r , "StartToClassify" , t 0]) ;
404 i f (t h i s . c l a s s e s == n u l l) t h i s . c l a s s i f y R a t e s () ;
405 t h i s . g e t c l a s s i d s () ;
406 var t 1 = (new Date ()) . ge tTime () ;
407 var c l a s s i f i c a t i o n T i m e = t 1 − t 0 ;
408 c o n s o l e . l o g (t h i s . c o n t a i n e r + ":Completed to classfy rates:" + t 1) ;
409 even tLog . push ([t h i s . c o n t a i n e r , "EndToClassify" , t 1]) ;
410 c o n s o l e . l o g (t h i s . c o n t a i n e r + ":Time for rate classification:" +

c l a s s i f i c a t i o n T i m e) ;
411 r a t e T i m e s [t h i s . c o n t a i n e r] . push (c l a s s i f i c a t i o n T i m e) ;
412 var t 2 = (new Date ()) . ge tTime () ;
413 even tLog . push ([t h i s . c o n t a i n e r , "StartToRender" , t 2]) ;
414 f o r (var t i l e in t h i s . t i l e s) {
415 i f (t h i s . t i l e s [t i l e] i n s t a n c e o f Array) {
416 c o n s o l e . l o g (t i l e + ":" + t h i s . t i l e s [t i l e] . l e n g t h) ;
417 var t 1 1 = (new Date ()) . ge tTime () ;
418 l oadFunc ({ t i l e :{ key : t i l e } , f e a t u r e s : t h i s . t i l e s [t i l e] }) ;
419 var t 2 2 = (new Date ()) . ge tTime () ;
420 i f (a rgumen t s . l e n g t h == 1) c o n s o l e . l o g ((t 2 2 − t 1 1)) ;
421 }
422 }
423 var t 3 = (new Date ()) . ge tTime () ;
424 var r ende rT ime = t 3 − t 2 ;
425 c o n s o l e . l o g (t h i s . c o n t a i n e r + ’:Time elapsed since classification is done

:’
426 + rende rT ime) ;
427 even tLog . push ([t h i s . c o n t a i n e r , "EndToRender" , t 3]) ;
428 r a t e T i m e s [t h i s . c o n t a i n e r] . push (r ende rT ime) ;
429 i f (a rgumen t s . l e n g t h == 1)
430 window . pos tMessage ("evt://" + argumen t s [0] + "/"+ t h i s . c o n t a i n e r + "

/" +
431 S t r i n g ((new Date ()) . ge tTime ()) , "*") ;
432 e l s e
433 window . pos tMessage ("evt://layerRendered/"+ t h i s . c o n t a i n e r + "/" +
434 S t r i n g ((new Date ()) . ge tTime ()) , "*") ;
435 } ,
436
437 g e t R a t e s : f u n c t i o n (da t a , ev t , pop , sm method , wgt) {
438 var qs = t h i s . qs = {
439 ’service’ : ’smoothing’ ,
440 ’data’ : da t a ,
441 ’e’ : ev t ,
442 ’b’ : pop ,
443 ’s_method’ : sm method
444 } ;
445 i f (sm method == ’Spatial Empirical Bayes’ | | sm method == ’Spatial Rate

’ | |
446 sm method == ’Locally Weighted Average’)
447 qs [’w’] = t h i s . qs [’w’] = wgt ;
448 var pMap = t h i s ;
449 var t 1 = (new Date ()) . ge tTime () ;
450 r a t e S t a r t T i m e s [qs . s method] . push (t 1) ;
451 c o n s o l e . l o g (t h i s . c o n t a i n e r + ’:Starting the acquisition of rates:’ + t 1

) ;

141

452 even tLog . push ([t h i s . c o n t a i n e r , "StartToGetRate" , t 1]) ;
453 $. a j a x (
454 { u r l : ’http://129.219.93.206/web_esda/service_proxy/smoothing/’ ,
455 d a t a : qs ,
456 da taType : ’jsonp’ ,
457 s u c c e s s : f u n c t i o n (r e s , s t a t , xhr) {
458 var t 2 = (new Date ()) . ge tTime () ;
459 c o n s o l e . l o g (pMap . c o n t a i n e r + ’:Completing the acquisition of

rates:’ + t 2) ;
460 even tLog . push ([pMap . c o n t a i n e r , "EndToGetRate" , t 2]) ;
461 var r a t e t i m e = t 2 − t 1 ;
462 c o n s o l e . l o g (pMap . c o n t a i n e r + ’:Getting rates:’ + r a t e t i m e) ;
463 r a t e T i m e s [pMap . c o n t a i n e r] . push (r a t e t i m e) ;
464 pMap . renderRateMap (r e s , s t a t , xhr) ;
465 }
466 }
467) ;
468 } ,
469
470 s t a r t G e t t i n g R a t e s : f u n c t i o n () {
471 t h i s . g e t R a t e s (t h i s . d a t a , t h i s . ev t , t h i s . pop , t h i s . sm method , t h i s . wgt) ;
472 } ,
473
474 i n i t : f u n c t i o n (da t a , ev t , pop , sm method , wgt) {
475 t h i s . i n i t T i m e = (new Date ()) . ge tTime () ;
476 c o n s o l e . l o g (t h i s . c o n t a i n e r + ": Starting to draw a map:" + t h i s . i n i t T i m e)

;
477 even tLog . push ([t h i s . c o n t a i n e r , "StartMapDraw" , t h i s . i n i t T i m e]) ;
478 t h i s . draw map () ;
479 t h i s . d a t a = d a t a ;
480 t h i s . e v t = e v t ;
481 t h i s . pop = pop ;
482 t h i s . sm method = sm method ;
483 t h i s . wgt = wgt ;
484 var t h i s m a p = t h i s ;
485 myEventObserver . a d d E v e n t L i s t e n e r ("highlightFeature" , f u n c t i o n (e v t D a t a) {
486 var e d a t a = e v t D a t a . s p l i t (’/’) ;
487 i f (e d a t a [1] != t h i s m a p . c o n t a i n e r) {
488 var l a t = p a r s e F l o a t (e d a t a [2]) ,
489 l n g = p a r s e F l o a t (e d a t a [3]) ,
490 r e f c l a s s = e d a t a [4] ,
491 t i l e I n f o = t h i s m a p . map . l o c a t i o n C o o r d i n a t e ({ l a t : l a t , l o n : l n g })

,
492 e l m i d = e d a t a [5] . s p l i t (’_’) ,
493 t a r g e t E l e m e n t = $ ("#" + t h i s m a p . c o n t a i n e r) ;
494 var t i l e i n d e x = t i l e I n f o . zoom + ’/’ + Math . f l o o r (t i l e I n f o . column

) + ’/’ +
495 Math . f l o o r (t i l e I n f o . row) ;
496 e l m i d = t h i s m a p . c o n t a i n e r + ’_’ + t i l e i n d e x + ’_’ + e l m i d [

e l m i d . l e n g t h − 1] ;
497 var s = t a r g e t E l e m e n t . f i n d (’path[id=’ + e l m i d + ’]’) ;
498 i f (s . l e n g t h == 1) $ (s [0]) . c l i c k () ;
499 }
500 }) ;
501 }
502 }

A.3.3 Event handling component
1 f u n c t i o n MessageEven tHand le r () {
2 t h i s . l i s t e n e r s = {} ;
3 var t h a t = t h i s ;
4 window . a d d E v e n t L i s t e n e r ("message" , f u n c t i o n (e v t) {
5 i f (e v t . d a t a . s l i c e (0 , 6) =="evt://")

142

6 t h a t . onMessage (e v t) ;
7 } , f a l s e) ;
8 }
9 MessageEven tHand le r . p r o t o t y p e . a d d E v e n t L i s t e n e r = f u n c t i o n (evtName , c a l l b a c k) {

10 i f (evtName in t h i s . l i s t e n e r s) {
11 t h i s . l i s t e n e r s [evtName] . push (c a l l b a c k) ;
12 } e l s e {
13 t h i s . l i s t e n e r s [evtName] = [c a l l b a c k] ;
14 }
15 }
16 MessageEven tHand le r . p r o t o t y p e . r e m o v e E v e n t L i s t e n e r = f u n c t i o n (evtName) {
17 i f (evtName in t h i s . l i s t e n e r s) {
18 d e l e t e t h i s . l i s t e n e r s [evtName] ;
19 }
20 }
21 MessageEven tHand le r . p r o t o t y p e . onMessage = f u n c t i o n (e v t) {
22 var e v t D a t a = e v t . d a t a . s l i c e (6) ;
23 var evtName = e v t D a t a . s p l i t (’/’) [0] ;
24 i f (evtName in t h i s . l i s t e n e r s) {
25 f o r (var i =0 ; i<t h i s . l i s t e n e r s [evtName] . l e n g t h ; i ++){
26 t h i s . l i s t e n e r s [evtName] [i] (e v t D a t a) ;
27 }
28 }
29 }

143

APPENDIX B

DETERMINATION OF SIMPLIFICATION TOLERANCE

144

1 import s h a p e f i l e
2 import numpy as np
3 from s h a p e l y . geomet ry import P o i n t , L i n e S t r i n g
4 from p o l y g o n f r o m l i n e s import l i n e s t o p o l y g o n s
5
6 def g e t d p m a x t o l e r a n c e (l i n e) :
7 ”””
8 compute t h e maximum t o l e a r n c e v a l u e f o r t h e g i v e n l i n e
9

10 Parame ter s
11 −−−−−−−−−−
12 l i n e : a L ine o b j e c t
13
14 R e t u r n s : a t u p l e o f
15 (t h e i n d e x o f t h e t o l e a r n c e , t h e t o l e r a n c e)
16 ”””
17 c o o r d s = l i s t (l i n e . c o o r d s)
18 i f l e n (c o o r d s) == 2 :
19 re turn
20 l i n e v e r t i c e s = c o o r d s [1 : −1]
21 b a s e l i n e = L i n e S t r i n g ([c o o r d s [0] , c o o r d s [−1]])
22 t o l e r a n c e s = []
23 f o r v e r t e x in l i n e v e r t i c e s :
24 t o l e r a n c e s += [P o i n t (v e r t e x) . d i s t a n c e (b a s e l i n e)]
25 t o l e r a n c e s = np . a r r a y ([−1] + t o l e r a n c e s + [−1])
26 re turn t o l e r a n c e s . argmax () , t o l e r a n c e s . max ()
27
28 def g e t d p t o l e r a n c e s (l i n e , l o c =0) :
29 ”””
30 compute t h e maximum t o l e a r n c e v a l u e s f o r t h e l e f t
31 and r i g h t s e g m e n t s o f t h e l i n e
32
33 Parame ter s
34 −−−−−−−−−−
35 l i n e : a L ine o b j e c t
36 l o c : an i n t e g e r
37 t h e i n d e x o f a c o o r d i n a t e a t which t h e l i n e i s s p l i t
38 t o two p i e c e s
39
40 R e t u r n s : a d i c t i o n a r y where
41 t h e key i s t h e i n d e x o f c o o r d i n a t e s from which
42 t h e t o l e r a n c e i s o b t a i n e d , and
43 t h e v a l u e i s t h e t o l e r a n c e
44 ”””
45 c o o r d s = l i s t (l i n e . c o o r d s)
46 t o l e r a n c e s = {}
47 r = g e t d p m a x t o l e r a n c e (l i n e)
48 i f r :
49 t o l e r a n c e s [r [0] + l o c] = r [1]
50 l e f t , r i g h t = c o o r d s [: r [0] + 1] , c o o r d s [r [0] :]
51 r1 = g e t d p t o l e r a n c e s (L i n e S t r i n g (l e f t) , l o c + 0)
52 r2 = g e t d p t o l e r a n c e s (L i n e S t r i n g (r i g h t) , l o c + r [0])
53 i f r1 : t o l e r a n c e s . u p d a t e (r1)
54 i f r2 : t o l e r a n c e s . u p d a t e (r2)
55 re turn t o l e r a n c e s
56
57 def g e t v e r t i c e c o u n t (l i n e s l i s t) :
58 ”””
59 g e t t h e numbers o f v e c t i c e s c o n s t i t u t i n g l i n e s
60
61 Parame ter s
62 −−−−−−−−−−
63 l i n e : a l i s t o f L ine o b j e c t s
64

145

65 R e t u r n s : a l i s t o f i n t e g e r s
66 each i n t e g e r i s t h e number o f v e r t i c e s i n a l i n e
67 ”””
68 re turn sum ([l e n (t) f o r l i n e , t , s in l i n e s l i s t])
69
70 def a p p l y d p s i m p l i f i c a t i o n (l i n e s e t , t o l e r a n c e) :
71 ”””
72 r e t u r n s i m p l i f i e d l i n e s
73 by u s i n g Douglas−Peucker a l g o r i t h m
74
75 Parame ter s
76 −−−−−−−−−−
77 l i n e s e t : a l i s t o f L ine o b j e c t s
78 t o l e r a n c e : a f l o a t , t o l e r a n c e t h r e s h o l d
79
80 R e t u r n s : a l i s t o f s i m p l i f i e d L ine o b j e c t s
81 ”””
82 l i n e s = []
83 f o r l i n e , t o l e r a n c e s , s h a r e d in l i n e s e t :
84 c o o r d s = l i s t (l i n e . c o o r d s)
85 i f c o o r d s [0] == c o o r d s [−1] or (s h a r e d == 1 and l e n (c o o r d s) > 3) :
86 s i m l i n e = l i s t (L i n e S t r i n g (c o o r d s [: −1]) . s i m p l i f y (t o l e r a n c e , True) .

c o o r d s)
87 s i m l i n e . append (c o o r d s [−1])
88 e l s e :
89 s i m l i n e = l i s t (l i n e . s i m p l i f y (t o l e r a n c e , True) . c o o r d s)
90 i f l e n (s i m l i n e) == 2 and (s i m l i n e in l i n e s or l i s t (r e v e r s e d (s i m l i n e))

in l i n e s) :
91 i f l e n (c o o r d s) > 3 :
92 s i m l i n e = l i s t (L i n e S t r i n g (c o o r d s [: −1]) . s i m p l i f y (t o l e r a n c e , True

) . c o o r d s)
93 s i m l i n e . append (c o o r d s [−1])
94 e l s e :
95 s i m l i n e = c o o r d s
96 l i n e s . append (s i m l i n e)
97 re turn l i n e s
98
99 def l i n e s t o s h a p e f i l e (l i n e s , r e c s , o u t f i l e n a m e , r e f f i l e n a m e) :

100 ”””
101 w r i t e s l i n e s t o a shape f i l e
102
103 Parame ter s
104 −−−−−−−−−−
105 l i n e s : a l i s t o f L ine o b j e c t s
106 r e c s : a l i s t o f a t t r i b u t e s o f t h e L ine o b j e c t s
107 o u t f i l e n a m e : t h e name o f an o u t p u t shape f i l e
108 r e f f i l e n a m e : t h e name o f a r e f e r e n c e o u t p u t f i l e from which
109 da ta columns are c o p i e d t o t h e o u t p u t shape f i l e
110
111 R e t u r n s : a shape f i l e
112 ”””
113 o u t s h p = s h a p e f i l e . LineShp (o u t f i l e n a m e , ’w’)
114 o u t s h p . c o p y f i e l d s (r e f f i l e n a m e)
115 o u t d a t a = z i p (l i n e s , r e c s)
116 f o r l i n e , r e c in o u t d a t a :
117 X = [coord [0] f o r coord in l i n e]
118 Y = [coord [1] f o r coord in l i n e]
119 o u t s h p . add (X, Y, r e c)
120
121 i f n a m e == ’ m a i n ’ :
122
123 t e s t f i l e = ’ t e s t . shp ’
124 shp = s h a p e f i l e . LineShp (t e s t f i l e)
125

146

126 l i n e 2 t o l e r a n c e = []
127 dmax , dmin = 0 , 0
128 r e c s = []
129 f o r l i n e , r e c in shp :
130 l = L i n e S t r i n g ([t u p l e (coord) f o r coord in l i n e [’ c o o r d i n a t e s ’]])
131 r e c s . append (r e c)
132 t o l e r a n c e s = [t [1] f o r t in s o r t e d (g e t d p t o l e r a n c e s (l) . i t e m s ())]
133 i f l e n (t o l e r a n c e s) > 0 :
134 m a x t o l e r a n c e = max (t o l e r a n c e s)
135 m i n t o l e r a n c e = min (t o l e r a n c e s)
136 i f m a x t o l e r a n c e > dmax :
137 dmax = m a x t o l e r a n c e
138 i f m i n t o l e r a n c e < dmin :
139 dmin = m i n t o l e r a n c e
140 l i n e 2 t o l e r a n c e . append ((l , [−1] + t o l e r a n c e s + [−1] , r e c [’ I n n e r R i n g S ’]))
141
142 p r i n t ’ t h e maximum t o l e r a n c e i s ’ , dmax
143 p r i n t ’ t h e minimum t o l e r a n c e i s ’ , dmin
144 p r i n t ’ t h e t o t a l number o f v e r t i c e s i s ’ , g e t v e r t i c e c o u n t (l i n e 2 t o l e r a n c e)
145
146 t o l e r a n c e r a n g e = dmax − dmin
147 f o r i in [0 . 2 , 0 . 1 6 , 0 . 1 2 , 0 . 0 8 , 0 . 0 4] :
148 t = dmin + i * t o l e r a n c e r a n g e
149 l i n e s e t = a p p l y d p s i m p l i f i c a t i o n (l i n e 2 t o l e r a n c e , t)
150 l i n e d a t a n a m e = ’ t e s t %s . shp ’ % s t r (t)
151 l i n e s t o s h a p e f i l e (l i n e s e t , r e c s , l i n e d a t a n a m e , t e s t f i l e)
152 p o l y g o n d a t a n a m e = ’ t e s t p o l y %s . shp ’ % s t r (t)
153 l i n e s t o p o l y g o n s (l i n e d a t a n a m e , p o l y g o n d a t a n a m e)

147

	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ACRONYMS and ABBREVIATIONS
	CHAPTER
	Introduction
	Online Choropleth Mapping and the Challenge of Large Areal Data
	Tile-based Choropleth Mapping and the Need for Scalability Evaluation
	Research Overview and Significance

	Literature Review
	Choropleth Mapping
	Data Classification
	Color and Legend Design

	Online Mapping
	Architectural Concerns: Server-side and Client-side Mapping
	Map Data Models: Raster and Vector Mapping
	GIServices and Web 2.0
	GIServices
	Web 2.0 and User-centered Geospatial Technologies

	Tile Mapping
	Summary

	Online Choropleth Mapping
	Traditional Approaches
	Tile-based Approaches

	Summary

	Method
	Test Applications
	Test Data
	Tile Generation
	Data Pre-processing
	Common Configurations for Map Tiling
	Raster Tiling
	Vector Tiling
	Comparability of Raster and Vector Tiles

	Evaluation Framework
	Test Operations
	Metric
	Test Environment

	Results
	Dynamic Choropleth Mapping
	Map Juxtaposition
	Dynamic Data Query
	Zoom in
	Pan
	Summary

	Discussion
	Conclusion
	REFERENCES
	APPENDICES
	Source Code for Test Applications
	Common Components
	Base web page
	Map Classifier

	Components for raster-based test application
	Test tool
	Map component
	Event handling

	Components for vector-based test application
	Test tool
	Map component
	Event handling component

	Determination of Simplification Tolerance

