
 

 

ARIZONA STATE UNIVERSITY 

SCHOOL OF SUSTAINABLE ENGINEERING AND THE BUILT ENVIRONMENT 

 
 
 

 
 
 

Comparative Life Cycle Assessment of Nano-Metal Embedded 
Water Treatment Resins 

 
 
 

Mac Gifford 
 
 
 
 

ASU-SSEBE-CESEM-2014-CPR-006 
Course Project Report Series 

 
June 2014 

http://cesem.asu.edu/


 

 

Comparative Life Cycle Assessment 

of Nano-Metal Embedded 

Water Treatment Resins 

 

 

Mac Gifford 

CEE598 LCA for Civil Systems 

Semester Project 

 

 

 

 

 

 

 

 

 

 

 

Spring 2014 

  



1 

 

EXECUTIVE SUMMARY 

In an effort to provide drinking water treatment options that are simple to operate, two hybrid resins have 

been developed that can treat multiple pollutants in a single step.  A parent weak base anion exchange resin is 

embedded with nanoparticles made of either iron hydroxide or titanium dioxide (Fe-WBAX and Ti-WBAX, 

respectively).  These provide targeted treatment for both arsenic and hexavalent chromium, common groundwater 

pollutants of recent regulatory significance.  The project goal is to evaluate the environmentally preferable choice 

between Fe-WBAX and Ti-WBAX resin for simultaneous treatment of arsenic and hexavalent chromium in 

drinking water.  The secondary goal is to identify where in the product life cycle is the most opportunity to reduce 

the environmental impact of the use of either product. 

Attributional life cycle assessment following the synthesis, use, and disposal of the hybrid resins is 

conducted to make this comparison.  Results are normalized to the mass of resin required to treat a defined volume 

of water to an acceptable contaminant level, thus capturing the effect of different treatment capacity.   The life cycle 

inventory is compiled including parent weak base anion exchange resin, metal precursors, precipitation chemicals, 

electricity for oven heating and packed bed pumping, and landfilling.  Emission factors from EcoInvent v2.2 are 

used to convert these inventory items to midpoint environmental and human health impacts.   

Fe-WBAX is found to have higher impacts for eutrophication potential, global warming, ozone depletion, 

and carcinogenics.  The synthesis phase contributes 50% - 99% of the total impacts for each impact category.  The 

Ti-WBAX resin is found to have higher impacts for acidification, ecotoxicity, and respiratory effects.  The synthesis 

phase contributes 75% - 99% of the total impacts for each impact category.  For either resin, much of the synthesis 

impacts are from the production of the polymeric parent anion exchange resin which uses many organic chemicals.  

The next highest impacts are those associated with causing the nanoparticle precipitation; chemicals in the case of 

Fe-WBAX and oven heating in the case of Ti-WBAX.  

Environmental impacts associated with the Ti-WBAX can be most mitigated by effective use of oven 

heating during synthesis.  Manufacturers should verify utilization of full oven capacity and energy efficient ovens.  

Impacts associated with the Fe-WBAX can be reduced by maximizing pollutant removal capacity through use of 

post treatment chemicals that can reduce the mass of anion exchange resin needed.  It can be learned from this study 

that benefits of treating drinking water do involve other environmental and human health tradeoffs. 
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1. INTRODUCTION 

Very small drinking water systems serve between 25 and 500 people and are often in rural locations.  An 

estimated 84% of water utilities in the United States fall into this category and account for 79% of all maximum 

contaminant level (MCL) violations (United States Environmental Protection Agency, 2007). These systems face 

unique challenges due to their size, such as lack of operational expertise and economies of scale working against 

them, but serve people who are still equally entitled to a clean water supply.   

Two prevalent groundwater pollutants that are challenging for small systems to remove are hexavalent 

chromium and arsenic.  Hexavalent chromium (Cr) is an oxidized metal for which California recently enacted an 

enforceable MCL of 10 parts per billion (ppb).  One of the leading treatment technologies is anion exchange 

(Brandhuber, et al., 2004). The MCL for arsenic (As) was lowered to 10 ppb in 2006 due to a variety of human 

ailments including cancer of the bladder, lungs, and skin. Treatment processes including adsorption to iron have 

been extensively studied (Speital, et al., 2010) but many small systems still struggle to comply. For example, the 

Tohono O’odham Utility Authority (TOUA) which oversees many small systems in Arizona reports 36% of service 

locations average 10 to 32 ppb of As (Tohono O'Odham Utility Authority, 2010). 

In an effort to provide treatment options that are simple to operate, two hybrid resins have been developed 

that can remove multiple drinking water contaminants in a single step.  Nanoparticles made of either iron (Fe) 

hydroxide or titanium (Ti) dioxide are precipitated using heat or chemical energy on the inside of a parent weak base 

anion exchange resin (WBAX).  The resulting product provides targeted treatment for both Cr on the WBAX and for 

As on the metal nanoparticles.  These non-soluble angular beads are approximately 1 millimeter in diameter.  They 

can be packed in a small cartridge for individual household use, or a larger vessel to treat water as it is pumped out 

of a well.  Previous studies have established synthesis protocols for the nano-iron embedded or nano-titanium 

embedded weak base anion exchange resins (Fe-WBAX and Ti-WBAX, respectively) and have explored their 

treatment efficacy (Gifford, Westerhoff, & Hristovski, 2014).  However the environmental impacts of their use have 

not been quantified, and it is not clear if either of the two resins is superior in terms of environmental performance. 

1.1 Goal 

The project goal is to conduct a Life Cycle Assessment to answer two questions.  What is the 

environmentally preferable choice between Fe-WBAX and Ti-WBAX resin for simultaneous treatment of arsenic 
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and hexavalent chromium in drinking water?  Where in the product life cycle is the most opportunity to reduce the 

environmental impact of the use of either product? 

2. METHODOLOGY 

The environmental impacts of two metal oxide-weak base anion exchange resins are to be assessed via 

comparative, attributional life cycle assessment (LCA).  This is to be accomplished in three phases, which are 

described in detail in the following sections.  First a functional unit must be defined to compare with.  Next, the 

system boundary will be defined, which will enable the life cycle inventory to be compiled.  This inventory is a list 

of all material and energy inputs into and out of the system boundary.  The quantities of these inputs will be scaled 

according to the functional unit.  Finally, the environmental impacts associated with the line items from the 

inventory are assessed.  This will be done by using impact factors.  This approach will enable comparison of the two 

resins from an environmental standpoint, as well as identification of what phase of the resin life cycle has the largest 

potential for environmental improvement. 

2.1 Functional Unit 

The proposed functional unit is 20 million gallons (MG) of drinking water treated to a minimum acceptable 

level.  Twenty MG represents the annual average domestic water use of 500 people.  A minimum level of use 

characteristics such as fines lost, chemical stability, and resin durability are assumed to be met by either resin. 

In order to fairly compare disparate pollutant removal capacities between the two resins it is requisite to 

define a raw water quality and treated water quality goal.  This study assumes a raw water quality of 20 ppb Cr and 

20 ppb As.  These levels are sufficiently high that treatment would be required beyond blending with 

uncontaminated wells.  The assumed water treatment quality goal is 8 ppb Cr and 8 ppb As, which provides a 

margin of safety beyond the federal mandated 10 ppb As maximum and California state mandated 10 ppb Cr 

maximum.  It is therefore equivalent to think of the functional unit as a mass of resin required to remove 12 ppb As 

and 12 ppb Cr from 20 MG of water.  The mass of hybrid resin included in this LCI is therefore the mass required to 

treat a volume of water defined by the project functional unit keeping both pollutants below the defined limit.  A low 

capacity to remove either pollutant would result in an increased mass of resin considered. 

The mass of each resin required will depend on the capacity to remove each pollutant, which was 

previously determined (Gifford, Westerhoff, & Hristovski, 2014).  The Fe-WBAX has a Cr removal capacity of 300 
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µg/g and an As removal capacity of 500 µg/g at the concentrations of interest. Therefore treating the functional unit 

worth of water would require 3,000 kg if determined by Cr capacity or 1,800 kg if determined by As capacity.  The 

larger is selected since it would be unacceptable to keep using the resin after Cr capacity was exhausted even if it 

was still removing As.  The Ti-WBAX resin has a Cr removal capacity of 630 µg/g and an As removal capacity of 

600 µg/g at the concentration of interest.  It is therefore limited by its As capcity, and requires 1,500 kg of resin to 

treat the functional unit worth of water.   

2.2 System Boundary 

This LCA is unique because it follows the life cycle of the treatment product itself instead of the water.  

The system boundary to be evaluated for these two resins has three principle phases: Synthesis, Use, and Disposal.  

Figure 1 depicts this boundary.  Data sources and details for each phase are then described. 

Figure 1 
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2.2.1 Synthesis The methods for synthesis of the hybrid resins have been previously described (Elton, 

Hristovski, & Westerhoff, 2013; Hristovski, et al., 2008) and proposed modifications have been quantified (Gifford, 

Westerhoff, & Hristovski, 2014).  They each require inputs of the parent ion exchange resin, a precursor solution 

consisting of a high concentration of aqueous metal, and some post treatment chemicals.  Differences between them 

reside in the method of metal precipitation.  The Fe-WBAX uses chemical precipitation including methanol and 

sodium hydroxide.  The Ti-WBAX uses heat-induced hydrolysis, expending electricity.   

The amount of electricity required to heat the Ti-WBAX at 80°C was estimated by two methods and the 

more conservative method used.  First, the physical heat transfer relationship was used 

E=MCdT/e 

where E is energy in kWh, M is the mass of air heated in kg, C is the air heat capacity in kJ/kgK, dT is the change in 

temperature, and e is the oven efficiency.  Assuming a 1 cubic meter size oven which contains 1.205 kg of air, heat 

capacity of 1.005 kJ/kgK, a heat change from 20°C, and a 30% efficiency, the oven would require 0.07kWh.  This is 

compared to empirical observations by appliance vendors on the energy use of an oven (Saving Electricity, 2013) 

showing that heating 2 cubic meters to 175°C uses 2 kWh.  This study interpolates to use half that oven size and 

40% of that temperature to estimate an oven electricity usage of 0.4 kWh.  As this is larger than the physically 

estimated usage, 0.4 kWh will be assumed. 

2.2.2 Use The principle inventory of the use phase is the energy required to pump water through the resin.  

Pumping energy is often identified as the largest environmental life cycle impact associated with water supply 

(Stokes & Horvath, 2011) and is therefore included in this inventory.  The required energy to pump water through 

the resin bed will be computed from the reported headloss per bed depth reported from the parent resin specification 

sheets.  This assumes the headloss through either hybrid resin is the same as the parent resin, which is reasonable 

since the embedded nanoparticles do not add exterior surface friction.  The main source of difference for energy 

required by the two hybrid resins will stem from different masses of resin required, as higher mass of resin requires 

more energy to pump through.  Energy for pumping from the source or after treatment are not considered.   

The bulk weight of moist resin is 1.1 kg per liter (Swiss Center for Life Cycle Inventories, 2010), allowing 

to convert the required mass of resin calculated in Section 2.1 to a volume of required resin.  An aspect ratio of the 
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cylindrical vessel containing the resin is assumed to be 3.  It is more reasonable to assume a constant aspect ratio 

than diameter since if a larger volume of resin was used a larger diameter vessel would be used also, avoiding an 

overly tall vessel.  The Fe-WBAX vessel is therefore estimated to be 3.5 feet in diameter and 10 feet tall.  The Ti-

WBAX vessel is estimated as 3 feet in diameter and 8 feet tall. 

Pump power can be estimated knowing the vessel dimensions according to the equation 

P=QpgH/n 

where P is pump power in kW, Q is water flow rate in gallons per minute, p is water density in pounds per cubic 

foot, g is acceleration due to gravity in feet per square second, H is headloss through the resin in feet, and n is pump 

efficiency.  The flow rate defined in Section 2.1 is 20 MG per year, equivalent to 38 gallons per minute.  Water 

density is 62.4 pounds per cubic foot and acceleration due to gravity is 32.2 feet per square second.  Headloss in the 

resin bed at a loading rate of 10 gpm/square foot is 2.25 psi per foot of bed depth (Rohm and Haas, 2008), 

equivalent to 5.19 feet of head per foot of bed depth.  Pump efficiency is assumed to be 60%.  Using the separate 

bed depths of the two resins yields required pump power for Fe-WBAX as 0.64kW and 0.51 kW for Ti-WBAX.  

These are equivalent to 5,600 kWh and 4,500 kWh over the course of one year, respectively. 

2.2.3 Disposal Owing to low regeneration efficiency and for ease of operation on behalf of the small 

systems, the embedded resins are assumed to be single use.  As soon as the bed exceeds the allowable level for 

either pollutant, it is considered exhausted and must be replaced.  The spent resin, comprised of the WBAX resin 

and the metal, is landfilled.  This study assumes disposal to a normal landfill, and future work will determine if the 

potential hazardous waste classification may require special landfill accommodations which cause alternate 

environmental impacts. 

  2.2.4 Exclusions The system boundary excludes a few notable items from the life cycle inventory.  The 

inventory will not include materials of the treatment plant itself such as piping, valves, and contactor vessels.  These 

materials are required for physical operation of the water treatment technology, but they are only loosely attributable 

to the resin itself.   

Transportation of the resin has also been excluded, including moving the parent resin to the lab, 

transporting the hybrid resin to the water treatment site, and haul of the exhausted resin away from the site.  While 
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the impacts associated with this travel are likely substantial, they would vary widely based on an arbitrary selection 

for treatment location.   

Since this study follows the impacts associated with the hybrid resin, those associated with the water are 

excluded.  Items such as well pumping, source water depletion, and distribution pumping are excluded.  These 

would be the same for either resin anyway. 

2.3 Environmental Impacts 

Environmental impacts will be estimated by multiplying the life cycle inventory items with their respective 

impact factors.  Impact factors will be obtained from the EcoInvent database version 2.2 (Swiss Center for Life 

Cycle Inventories, 2010).  These impact factors estimate the total environmental impacts that a single inventory item 

has normalized to a unit, typically mass,  in terms of equivalent risk.  It is important to match each inventory line 

item identified in the system boundary to a representative impact factor.  Some of these matches are described 

below. 

An impact factor for a general anion exchange resin is available (Anion Exchange Resin – Synthesis).  It 

represents a strong base anion exchange resin made of polystyrene, functionalized with chloromethyl methyl ether 

and trimethylamine, and 50% moisture content.  The Fe-WBAX and Ti-WBAX resins being studied use a weak base 

anion exchange resin made of phenol-formaldehyde polycondensate, has undergone an unknown functionalization, 

and a 60% moisture content (Rohm and Haas, 2008).  Though not a perfect representation this is deemed an 

appropriate match for an impact factor since they are both organic polymer bases with some form of 

functionalization and high moisture content.  

Many chemical inventory items correlated closely with impact factors.  Sulfuric acid, ferric chloride, 

sodium hydroxide, methanol, and sodium chloride each had impact factors with matching CAS numbers and 

descriptions.  The titanium oxysulfate precursor was matched with the impact factor for titanium dioxide via sulfate 

production process.  Electricity impact factors were selected as a supply mix, medium voltage, at grid, with average 

United States production data.  

The impact assessment categories to be evaluated are defined by TRACI (Bare, 2002).  This system is of 

interest as it was developed in the United States and covers a range of environmental and human health midpoint 
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impacts.  Some of the impact categories to be assessed include non-cancer toxicity, acidification, and global 

warming potential.  Toxicity is of interest due to chemicals used in synthesis such as methanol and disposal of 

possible radioactive wastes.  This generated toxicity may be compared to the toxicity avoided by removing the 

drinking water pollutants.  Acidification is of interest due to acids used in synthesis.  Global warming potential is 

likely due to petroleum in the parent resins and column pumping energy.  

3. RESULTS AND DISCUSSION 

3.1 Life Cycle Inventory 

The life cycle inventory was first compiled for each resin, and scaled to the mass of resin required to treat 

the functional unit (20 million gallons treated water).  Items included in this inventory are summarized in Figure 1.  

The iron based resin (Fe-WBAX) has a limiting pollutant capacity of 300 micrograms chromium removed per gram 

resin, requiring 3,000 kg of resin to treat the functional unit.  The synthesis phase of this resin includes high 

chemical usage.  The energy required during use phase equals the headloss through a packed bed of the required 

mass of resin.  Estimated base on pump head relationships, this totals 54 feet of headloss requiring 5600 kWh to 

overcome over the course of one year of pumping to deliver the functional unit.  Disposal after single use is to a 

landfill. 

The titanium based resin (Ti-WBAX) has a limiting pollutant capacity of 600 micrograms arsenic per gram 

resin, requiring 1,500 kg of resin to treat the functional unit.  The synthesis phase of the resin requires energy to heat 

an oven for hydrolysis.  Heat required for a one cubic meter oven to reach 80°C for 1 hour is estimated as 0.4 kW, 

resulting in 13,000 kWh demand for a scaled-size oven to heat for 24 hours. Pumping during use phase must 

overcome 43 feet of headloss, requiring 4500 kWh of pump energy.  Disposal after single use is to a landfill.   

3.2 Life Cycle Impact Assessment 

TRACI midpoint environmental impacts associated with all life cycle inventory items are estimated by use 

of impact factors obtained from EcoInvent v2.2 (Swiss Center for Life Cycle Inventories, 2010).  The total impacts 

of all life cycle phases for each resin in each impact category is shown in Figure 2.  These impacts are normalized to 

eachother to serve as a comparison between the two resins. 
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Figure 2 

 

Fe-WBAX is found to have higher impacts for eutrophication potential, global warming, ozone depletion, 

and carcinogenics.  The Ti-WBAX is found to have higher impacts for acidification, ecotoxicity, and respiratory 

effects.  They are very similar for photochemical oxidation and non-carcinogenic toxicity.  The largest difference 

between them is in ozone depletion, where the Fe-WBAX impact is twice as high as Ti-WBAX.  In the other 

differentiated categories variances range from 20% - 40%.   

In order to understand the source of these variances the results were next analyzed by phase.  The impacts 

of each resin broken up by contribution from each phase is shown in Figure 3 for each resin.  For the Fe-WBAX 

resin the synthesis phase contributes 50% - 100% of the total impacts for each impact category. The use phase 

contributes 0% - 50% to each category, and the disposal phase contributes 0% - 15%.  For the Ti-WBAX resin the 

synthesis phase contributes 75% - 100% of the total impacts for each impact category.  The use phase contributes 

0% - 20%, and the disposal phase contributes 0% - 10% for each category.   
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Figure 3 

 

It is very evident that the synthesis phase dominates all life cycle phases for both resins.  This is most 

evident in the case of ozone depletion, where over 99% of the calculated impact for either resin happens during 

synthesis.  This is due almost exclusively to the production of the parent anion exchange resin, which has an 

emission factor four orders of magnitude higher than that associated with any other inventory item.  Further research 

into the production method for polystyrene anion exchange resin reveals usage of many organic chemicals, 

including divinylbenzene, chloromethylesther, petroleum ether, dimethylamine, and benzene (Kunin, 1958).  These 

chemicals are the likely reason impacts from  use of anion exchange resin are so high since they have high carbon 

footprints, and human or environmental toxicity.   
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The other synthesis impacts associated with the Fe-WBAX resin synthesis are primarily from the 

cumulative impact of the chemicals used to precipitate the iron hydroxide nanoparticles.  The synthesis impacts 

associated with the Ti-WBAX stems primarily from the energy required to heat the resin in an oven to hydrolyze the 

titanium dioxide nanoparticles.  These impacts are very sensitive to assumptions made about the oven utilization, 

including the amount of resin heated per volume of oven.  This is also an area where environmental performance can 

be improved if it can be shown that shorter heating times are acceptable.  Oven utilization efficiency is likely to 

increase in the future as adoption of these resins increases and production scales since the manufacturers can reduce 

electricity costs by filling the ovens to capacity.  

Impacts associated with the use phase of the Fe-WBAX are approximately 25% larger than those associated 

with the use phase of the Ti-WBAX.  This is due to the larger mass of resin required and subsequent higher headloss 

that must be overcome by pumping.  Packed bed columns were assumed to maintain a 1:3 width to height aspect 

ratio.  This means that even though two times as much volume of Fe-WBAX resin is required to treat an equivalent 

volume of water as the Ti-WBAX resin, the bed depth only increased by 25% with the rest of the volume 

compensated by increased column diameter.  Different assumptions about bed configuration would alter the results, 

but the total impacts would still be relatively small compared to synthesis impacts. 

Further understanding of the impacts associated with the synthesis phase for each resin is next explored.  

Figure 4 compares the impacts for three midpoint indicators (global warming potential, ocean acidification potential, 

and human non-carcinogenic toxicity) delineated by each inventory item.  Please note the log scale. 
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Figure 4 
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The Fe-WBAX is found to have a total of 20,000 kg of CO2-eq in the synthesis phase and 29,000 kg of 

CO2-eq overall, compared to 17,000 CO2-eq synthesis and 23,000 kg of CO2-eq overall for Ti-WBAX.  The Fe-

WBAX has a higher impact from the parent anion exchange resin due to higher mass of resin required to treat an 

equivalent volume of water.  The next highest impact is from methanol, which is an organic solvent and has high 

carbon footprint.  The Ti-WBAX uses less parent anion exchange resin but still has significant impact associated 

with it.  It also uses less titanium precursor than the Fe-WBAX uses iron precursor, but the carbon footprint is still 

higher.  The primary synthesis impact associated with the Ti-WBAX is the electricity required for oven heating.  

The overall synthesis impact is smaller due to higher capacity for pollutant removal and not using methanol or other 

chemicals. 

The acidification potential and human toxicity impacts associated with each resin broken down by 

inventory item show similar overall trends as the global warming potential.  The largest impacts are from the heating 

and pumping electricity and the parent anion exchange resin. 

In an effort to simplify future use of the results of this LCA, impact factors associated with the Fe-WBAX 

and Ti-WBAX are presented in Table 1.  These were found by summing the total impacts by phase and normalizing 

to 1 kg of resin (instead of to one functional unit).  For consistency with data observed in the EcoInvent database, 

the synthesis and disposal phases are presented separately with the use phase omitted. 
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3.3 Data Assessment 

This analysis relies heavily on the emission factors for TRACI impacts published in the EcoInvent 

database.  Each of these factors was used as published and unfortunately did not include any statistical analysis such 

as standard deviation.  They were almost all assembled from sources in Europe, except for electricity generation 

(pumping, heating) were US data was available.  All factors were used at plant, as desired, and do not include 

transportation to synthesis location or water treatment location.  Good correlation between inventory items and 

described factors was generally found.  For instance, specific chemicals with matching CAS numbers were 

identified in the database.  One general anion exchange resin was used from the database, but synthesis procedures 

can vary widely and develop rapidly over time lending to low reliability.  Titanium and iron ore factors also vary 

based on production process and using a single data point has low reliability. 

Further assessment of the data is provided in a pedigree matrix in Table 2.  Six sets of data were evaluated 

for reliability and sensitivity.  Because the resin is a high impact for both resins, the methanol is a high impact for 

the Fe-WBAX, and the heating electricity is a high impact for the Ti-WBAX, they were each chosen to be 

evaluated.  The inventory data and the impact factor data were evaluated separately for each.  A score of 1 indicates 

the data has high reliability or sensitivity, and a score of 5 indicates very low reliability or sensitivity.   
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Table 2 
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3.4 Proposed Future Work 

Future work can aim to further refine this study and to expand it to include other water treatment options.  

Proposed future work for this study before peer reviewed publication or use in a dissertation includes: 

• Statistical analysis of the data, including distribution and Monte Carlo simulation to give larger 

confidence in the data. 

• Quantify human toxicity and carcinogenicity avoided by removing contaminants.  Water treatment 

is intended to lower the overall health risk after all. 

• LCA of mixed bed.  The alternate technology to using the hybrid resins is to use two different 

sorbents with individual capacity for pollutant removal.  This will be included as a third option for 

comparison. 

• Modify inventory to account for metal precursor reuse.  For either of these hybrid resins the metal 

precursor is a very high concentration solution that is reusable for multiple resin batches.  Recycle 

of this precursor solution should be allocated to a single batch of resin.   

• Include additional impacts partial to a hazardous waste classification during the disposal phase if 

necessary. 

• Compare to impacts from water distribution pumping, or resin hauling.  If those impacts are orders 

of magnitude higher than those found here, it can be said that the treatment step is negligible and 

small preferences between the two resins will be trivial. 

• Identity what process in the synthesis of the parent anion exchange resin has such a high ozone 

depletion potential and study if this process can be avoided. 

4. CONCLUSIONS 

The Ti-WBAX resin is the environmentally preferable option for simultaneous treatment of Cr and As in 

terms of eutrophication potential, global warming potential, ozone depletion, and human carcinogenic potential.  

The Fe-WBAX is the environmentally preferable option in terms of acidification potential, ecotoxicity, and human 

respiratory effects.  Their impacts are very similar in terms of photochemical oxidation and human non-carcinogenic 

toxicity. 
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Electricity use for oven heating during the synthesis of Ti-WBAX is one of the largest contributor to 

environmental impacts and one of the largest opportunities for reducing those impacts.  Resin manufacturers can 

help mitigate these impacts through utilizing high efficiency ovens and verifying full use of oven capacity each time 

a batch is synthesized. 

Sulfuric acid and sodium chloride post treatments used in the synthesis process have small impacts 

compared to the parent anion exchange resin itself.  Optimizing their use to maximize pollutant removal capacity 

may be beneficial from an environmental standpoint if it reduces the total mass of resin needed to treat a given 

volume of water. 

Regulators who set water quality standards usually do so in an effort to reduce human exposure to negative 

health effects.  While lower exposure to contaminants such as Cr and As will reduce these risks overall, employing 

additional treatment technologies will add other environmental impacts.  Tradeoffs between human health impacts 

and environmental impacts should be understood in considering new water quality regulations. 
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