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Abstract 

New and important separations capabilities are being enabled by utilizing other electric 

field-induced forces besides electrophoresis, among these is dielectrophoresis. Recent works 

have used experimentally simple insulator-based systems that induce field gradients creating 

dielectrophoretic force in useful formats. Among these, juxtaposing forces can generate gradient-

based steady-state separations schemes globally similar to isoelectric focusing. The system of 

interest is term gradient insulator-based dielectrophoresis and can create extremely high 

resolution steady-state separations for particles four nanometer to ten microns in diameter, 

including nearly all important bioparticles (large proteins, protein aggregates, polynucleotides 

viruses, organelles, cells, bacteria, etc.).  A theoretical underpinning is developed here to 

understand the relationship between experimental parameters and resolution and to identify the 

best expected resolution possible. According to the results, differences in particles (and 

bioparticles) as small as one part in 10
4
 for diameter (sub-nanometer resolution for a one micron 

particle), one part in 10
8 

for dielectrophoretic parameters (dielectrophoretic mobility, Clausius-

Mossotti factor), and one part in 10
5
 for electrophoretic mobility. These figures of merit are 

generally better than any competing technique, in some cases by orders of magnitude. This 

performance is enabled by very strong focusing forces associated with localized gradients.  

 

1 Introduction 

 Effective control over the selective transport of biological material lies at the heart of 

medical, pharmaceutical, and environmental analytical strategies. Many existing methodologies, 

such as those used in clinical diagnosis are quite limited in their capabilities, at least relative to 

the bioanalytical challenges of modern personalized medicine. Developments of new separatory 

tools are needed to meet these challenges of medical diagnostics and environmental monitoring. 

In many analytical separations, components become segregated as they move along a 

linear axis at different rates. Chromatography, and zone electrophoresis serve as examples of this 

paradigm [1, 2]. Such methods are ultimately limited by band broadening from dispersive 

effects, which decrease analyte concentration throughout the process. This limits subsequent 

analyte detection and multi-dimensional analysis. Steady-state separation schemes, such as 

equilibrium-gradient techniques, employ competing forces to simultaneously concentrate and 



fractionate analytes. Each unique species is focused to a distinctive zero-velocity location, where 

the concentration distribution about that point reflects the interplay between focusing and 

dispersive forces. Isoelectric focusing [3], density gradient sedimentation [4], and electric field 

gradient focusing [5] serve as paradigmatic examples.  

 The quality of any separation is described in terms of resolution, an expression that 

specifies separation of the centroid of the analyte concentration profiles versus the spreading of 

each band. Most separatory systems have been thoroughly explored theoretically and 

experimentally including chromatography [6, 7], capillary electrophoresis [8], isoelectric 

focusing [9], and electric field gradient focusing [10]. 

The current work is focused on developing a theoretical basis of resolution for gradient 

insulator-based dielectrophoresis (g-iDEP). This area of research was initiated in 2007, when 

Pysher and Hayes introduced a novel microfluidic approach to bioparticle separation [11]. It was 

built upon prior developments in insulator-based dielectrophoresis (iDEP) [12-16]. Additional 

significant contributions have been made in this arena since then, primarily aimed at single-target 

analysis [17], sample bifurcation [18, 19] , or multiple-outlet diversion strategies [20-22]. The 

scheme discussed here is an amalgam of iDEP and traditional linear separation science, which 

represents a new approach to equilibrium-gradient separations conducive to use with any analyte 

from ~4 nm to 10 micron diameter and is especially useful for a large portion of, if not all 

bioparticulates (viruses, organelles, cells, lysosome, vesicles, etc.). This technique, while 

employing local-gradient, steady-state focused bands of material, it differs significant from true 

global gradient techniques in that it is directional, the analytes/targets must be introduced from 

single side of the device. There is no mechanism to refocus materials once passed their first 

focus or balance point. This is an important distinction for classification of separations science 

and will affect certain operating paradigms, but the general advantages of gradient techniques are 

true for this strategy also. This technique has already demonstrated isolation and concentration of 

a wide range of particles, including bacteria, polystyrene spheres, red blood cells, and amyloid 

fibrils [11, 23-26]. 

Within g-iDEP, a combination of dielectrophoretic (DEP), electrophoretic (EP), and 

electroosmotic flow (EOF) forces are used to transport, separate, and concentrate particles within 

a channel. This technique utilizes a continuous microchannel patterned with sequentially 

changing, constrictive insulating features. These constrictions, referred to as gates, create a series 



of DEP-inducing electric field non-uniformities. The specific geometry of the channel yields 

increasingly strong DEP forces along the channel. Particles traveling through the microchannel 

are propelled by a combination of EP and EOF forces. Since DEP forces scale differently with 

the channel’s cross-sectional area than do EP and EOF forces, unique traps are formed at each 

gate as they become sequentially narrower. This causes physically distinct particles to settle into 

discrete zones near different gates. Thus, they assume unique positions along the channel’s 

separatory axis based on their electrophoretic and dielectrophoretic mobilities (Figure 1). 

Considered together, a particle’s electrophoretic and dielectrophoretic mobilities reflect an array 

of properties including size, charge, polarizability, shape, and heterogeneity. Interrogating all 

these properties together yields a separatory scheme that can be fine-tuned for high-resolution 

capture and concentration of analytes. This work will allow the estimation of the smallest change 

in electrokinetic or dielectrophoretic properties that can be uniquely differentiated by g-iDEP.  

Using common experimental values for field strength, gradient and particle properties, 

these calculations suggest that separation of targets based on 15-nm differences in 1-µm diameter 

particles is possible (one part in 10
2
) and the smallest resolvable difference in dielectrophoretic 

mobility is 10
-23

 m
4
/V

2
s (one part in 10

4
) and the smallest resolvable change in Clausius–

Mossotti factor is 10
-5

.  When the highest experimentally available values are used, the smallest 

resolvable difference for these physical parameters are 500 pm for radius, 10
-26

 m
4
/V

2
s (one part 

in 10
7
) for dielectrophoretic mobility, and 10

-8
 for the Clausius–Mossotti factor (all for a nominal 

one-micron diameter particle). This suggests that the technique promises to be an ultra-high 

resolution separation scheme for molecules and particles ranging from 4 nm to 10 µm in 

diameter.  

 

2 Theory 

2.1 Analyte behavior, transport and capture zones 

Particle motion within a g-iDEP channel results from a superposition of forces induced 

by the applied electric field (Figures 1 and 2). These forces vary predictably with the electric 

field and depend on electro-physical properties of the analyte. As a result, a particle’s 

translational velocity in an electric field is described by electrokinetic mobilities intrinsic to that 

particle. Electrophoretic and electroosmotic forces are both proportional in magnitude and 



directionally coincident to the electric field and these two terms are included in an electrokinetic 

mobility (µEK).  

𝜇𝐸𝐾 = 𝜇𝐸𝑃 + 𝜇𝐸𝑂𝐹        (1) 

The third electrokinetic force to consider is dielectrophoresis, characterized by dielectrophoretic 

mobility (µDEP). The dielectrophoretic mobility is a function of the permittivity of the solution 

(f), particle radius (r), Clausius-Mossotti factor (fCM) and solution viscosity () according to 

𝜇𝐷𝐸𝑃 = 𝜀𝑓𝑟2𝑓𝐶𝑀 3𝜂⁄ .[27] 

In order to represent the transport of target analyte along the centerline of the system, 

conventions provided by Giddings are used [28]. These state that transport (w) is the sum of 

field-induced analyte velocity (u) and pressure-driven fluid flow velocity (b).  

𝑤 = 𝑢 + 𝑏       (2) 

No pressure-driven flow exists, so we consider only field-induced analyte motion. Transport or 

net velocity is the sum of component electrokinetic and dielectrophoretic velocity vectors for the 

analyte: 

𝑢 = 𝑣𝐸𝐾 + 𝑣𝐷𝐸𝑃      (3) 

The component electrokinetic and dielectrophoretic velocity vectors can be expressed in the 

following terms, which derive from the respective force equations (not shown): 

   𝑣𝐸𝐾 = 𝜇𝐸𝐾𝐸             (4)    

 𝑣𝐷𝐸𝑃 = 𝜇𝐷𝐸𝑃∇|𝐸|2      (5) 

Each of two analytes can be assigned an electrokinetic mobility (µEK1 and µEK2) and 

dielectrophoretic mobility (µDEP1 and µDEP2). For further discussion of analyte separation, we 

will also consider the average of the two species’ electrokinetic or dielectrophoretic mobilities: 

µ̅ =  
(µ1+µ2)

2
      (6) 

Since transport velocity is dependent on the position of the analyte along the separatory 

axis, equations (3) and (4) can be written as functions of x: 

𝑤(𝑥) = [𝑣𝐸𝐾(𝑥)] + [𝑣𝐷𝐸𝑃(𝑥)]   (7) 

𝑤(𝑥) =  𝜇𝐸𝐾[𝐸(𝑥)] + 𝜇𝐷𝐸𝑃[∇|𝐸|2(𝑥)]    (8) 

These equations hold true for any physical position along the centerline of the channel’s 

separatory axis.  



While the field and gradient are continuous throughout the system, the areas near the 

points of closest approach (gates)  define the resolution -limiting conditions (Figures 1and 2). 

The width of these zones and the intervening minimum gradient zones are discussed below, but 

these factors do not need to be considered to develop this approach. At or near one of these gates, 

for a specific analyte, a balance point is induced and a zone forms about this zero velocity 

crossover. The width of the zone will directly impact the ability to keep that material trapped at a 

single gate and prevent some material from moving to the next gate. The variable, x0, is set at the 

center of the local capture zone. The forces and resulting velocity are conveniently related to the 

distance from the balance point for a particular analyte.  

𝑢 = −𝑎(𝑥 − 𝑥0)      (9)  

The slope a represents the intensity of the local restoring forces. The a term may be treated as 

linear, either by assuming very small values of x – x0, or by using the first non-zero factor in a 

Taylor series expansion about x0. This focusing effect generates a steady-state Gaussian 

concentration profile around the force balance point. The characteristic width and properties of 

this distribution defines the concentration profile for a band of material. 

 

                       𝑎 = −
𝑑𝑢

𝑑𝑥
= −

𝑑(𝑣𝐸𝐾+𝑣𝐷𝐸𝑃)

𝑑𝑥
= − [𝜇̅𝐸𝐾 (

𝑑𝐸

𝑑𝑥
) + 𝜇̅𝐷𝐸𝑃 (

𝑑∇|𝐸|2

𝑑𝑥
)]    (10) 

 

Furthermore, Giddings showed that the characteristic variance profile for this type of system 

is[28]: 

𝜎2 =
𝐷𝑇

𝑎
      (11) 

In this case, the term DT represents the sum of all dispersive forces, including those resulting 

from diffusion (Ddiff), flow-based effects, solution heating, particle-particle interactions, and 

heterogeneous fields (Figure 2). Substituting equation 10 for a and solving for σ yields the 

standard deviation: 

 

𝜎 = √
𝐷𝑇

−[𝜇̅𝐸𝐾(
𝑑𝐸

𝑑𝑥
)+𝜇̅𝐷𝐸𝑃(

𝑑∇|𝐸|2

𝑑𝑥
)]

    (12) 

 



This expression provides a measure for the peak width of captured analyte. This construct is 

virtually identical to that of isoelectric focusing, adapted to the focusing forces present in g-

iDEP.  

 

2.2 Assigning distance between concentration centroids 

Spatial segregation of two similar analytes is designated as resolution of the analytes. 

This is defined by the distance between the centroids of two separated species (∆X), and their 

degree of spreading (σ)[29] . 

𝑅 =  
∆𝑋

4𝜎
        (13) 

The definition of the smallest difference in analytes that can be separated on a g-iDEP device is 

similar to traditional techniques. There are still slightly overlapping peaks, with R > 1.5, but each 

peak is collected at separate, nearest neighbor gates (Figure 2). Just to emphasize this point, the 

resolution of two species is defined as collection of one species at one gate and the other species 

at the next gate. A finite distance separates these gates. This distance is used to assign differences 

in the maximum field and gradient at those gates, allowing for calculation in Eulerian space 

(focusing on static space instead of time or moving coordinates).   

For any two arbitrary neighboring gates, the local maxima are defined as E1 and E2. The 

average of these two local maxima is Eave. The change between successive pairs of gates is ∆Emax 

= E2 – E1. The local maximum gradient terms are defined as ∇|𝐸|2
1 and ∇|𝐸|2

2. The average of 

these values is ∇|𝐸|2
𝑎𝑣𝑒. The difference in this parameter between successive pairs of 

neighboring gates or capture zones is expressed as ∆(∇|𝐸|2)𝑚𝑎𝑥 = ∇|𝐸|2
2 −  ∇|𝐸|2

1. 

 Within this context, ∆X represents the distance between capture zones of two analytes 

along the projected continuum of gates. This concept facilitates determination of the minimum 

difference in the maximum field strength and the gradient term between two gates required for 

analyte separation. The term ∆v represents the difference in instantaneous net velocity of 

analytes 1 and 2 at their balance point at adjoining gates. The expression du/dx represents the 

rate at which the field and gradient terms change along the channel from gate to gate. 

 

∆𝑋 =
∆𝑣

𝑑𝑢/𝑑𝑥
     (14) 

where: 



∆𝑣 = ∆𝜇𝐸𝐾𝐸𝑎𝑣𝑒 + ∆𝜇𝐷𝐸𝑃∇|𝐸|2
𝑎𝑣𝑒   (15) 

𝑑𝑢

𝑑𝑥
= 𝜇̅𝐸𝐾 (

𝑑𝐸𝑚𝑎𝑥

𝑑𝑥
) + 𝜇̅𝐷𝐸𝑃 (

𝑑∇|𝐸|2
𝑚𝑎𝑥

𝑑𝑥
)   (16) 

Combining these yields a complete expression for ∆X: 

∆𝑋 =
∆𝜇𝐸𝐾𝐸𝑎𝑣𝑒+∆𝜇𝐷𝐸𝑃∇|𝐸|2

𝑎𝑣𝑒

𝜇̅𝐸𝐾(
𝑑𝐸𝑚𝑎𝑥

𝑑𝑥
)+𝜇̅𝐷𝐸𝑃(

𝑑∇|𝐸|2𝑚𝑎𝑥
𝑑𝑥

)
 .   (17) 

 An equation for resolution may be expressed by incorporating equations 17 and 12 (and 

13) for ΔX and combined zone width:  

𝑅 =
∆𝑋

4𝜎
=

∆𝜇𝐸𝐾𝐸𝑎𝑣𝑒+∆𝜇𝐷𝐸𝑃∇|𝐸|2𝑎𝑣𝑒

𝜇̅𝐸𝐾(
𝑑𝐸𝑚𝑎𝑥

𝑑𝑥
)+𝜇̅𝐷𝐸𝑃(

𝑑∇|𝐸|2𝑚𝑎𝑥
𝑑𝑥

)

4
√

𝐷𝑇

−[𝜇̅𝐸𝐾(
𝑑𝐸
𝑑𝑥

)+𝜇̅𝐷𝐸𝑃(
𝑑∇|𝐸|2

𝑑𝑥
)]

 
=

(∆𝜇𝐸𝐾𝐸𝑎𝑣𝑒+∆𝜇𝐷𝐸𝑃∇|𝐸|2
𝑎𝑣𝑒)√−[𝜇̅𝐸𝐾(

𝑑𝐸

𝑑𝑥
)+𝜇̅𝐷𝐸𝑃(

𝑑∇|𝐸|2

𝑑𝑥
)] 

4[𝜇̅𝐸𝐾(
𝑑𝐸𝑚𝑎𝑥

𝑑𝑥
)+𝜇̅𝐷𝐸𝑃(

𝑑∇|𝐸|2𝑚𝑎𝑥
𝑑𝑥

)]√𝐷𝑇

 . (18) 

 

In order to achieve baseline separation, by setting R greater than or equal to 1.5 the 

equation can be rearranged to solve for the minimum differences between two analytes that can 

still be separated.  

𝑅 = 1.5 >
(∆𝜇𝐸𝐾𝐸𝑎𝑣𝑒 + ∆𝜇𝐷𝐸𝑃∇|𝐸|2

𝑎𝑣𝑒)√− [𝜇̅𝐸𝐾 (
𝑑𝐸
𝑑𝑥

) + 𝜇̅𝐷𝐸𝑃 (
𝑑∇|𝐸|2

𝑑𝑥
)] 

4 [𝜇̅𝐸𝐾 (
𝑑𝐸𝑚𝑎𝑥

𝑑𝑥
) + 𝜇̅𝐷𝐸𝑃 (

𝑑∇|𝐸|2
𝑚𝑎𝑥

𝑑𝑥
)] √𝐷𝑇

 

 

∆𝜇𝐸𝐾,𝑚𝑖𝑛𝐸𝑎𝑣𝑒 +  ∆𝜇𝐷𝐸𝑃,𝑚𝑖𝑛∇|𝐸|2
𝑎𝑣𝑒 ≥

6[𝜇̅𝐸𝐾(
𝑑𝐸𝑚𝑎𝑥

𝑑𝑥
)+𝜇̅𝐷𝐸𝑃(

𝑑∇|𝐸|2𝑚𝑎𝑥
𝑑𝑥

)]√𝐷𝑇

√−[𝜇̅𝐸𝐾(
𝑑𝐸

𝑑𝑥
)+𝜇̅𝐷𝐸𝑃(

𝑑∇|𝐸|2

𝑑𝑥
)]

     (19) 

Assume there is no change in DEP forces to calculate minimum resolvable differences in 

electrokinetic effects:  

 

                          ∆𝜇𝐸𝐾,𝑚𝑖𝑛 =
6[𝜇̅𝐸𝐾(

𝑑𝐸𝑚𝑎𝑥
𝑑𝑥

)+𝜇̅𝐷𝐸𝑃(
𝑑∇|𝐸|2𝑚𝑎𝑥

𝑑𝑥
)]√𝐷𝑇

𝐸𝑎𝑣𝑒√−[𝜇̅𝐸𝐾(
𝑑𝐸

𝑑𝑥
)+𝜇̅𝐷𝐸𝑃(

𝑑∇|𝐸|2

𝑑𝑥
)]

       (20) 

 

Similarly, setting the EK forces to a constant value allows the minimum resolvable differences in 

dielectrophoretic effects:  

 



  ∆𝜇𝐷𝐸𝑃,𝑚𝑖𝑛 =
6[𝜇̅𝐸𝐾(

𝑑𝐸𝑚𝑎𝑥
𝑑𝑥

)+𝜇̅𝐷𝐸𝑃(
𝑑∇|𝐸|2𝑚𝑎𝑥

𝑑𝑥
)]√𝐷𝑇

∇|𝐸|2
𝑎𝑣𝑒√−[𝜇̅𝐸𝐾(

𝑑𝐸

𝑑𝑥
)+𝜇̅𝐷𝐸𝑃(

𝑑∇|𝐸|2

𝑑𝑥
)]

              (21) 

 

By assigning any changes in dielectrophoretic mobility to altered radius, a minimum value of 

resolvable particle diameter can be calculated according to:  

 

∆𝑟 𝑚𝑖𝑛 = [
3𝜂

𝜀𝑓𝑓𝐶𝑀
[(𝜇𝐷𝐸𝑃+

1

2
𝜇𝐷𝐸𝑃,𝑚𝑖𝑛) − (𝜇𝐷𝐸𝑃−

1

2
𝜇𝐷𝐸𝑃,𝑚𝑖𝑛)]]

1/2

   (22) 

A similar approach allows solving equation 21 for minimum resolvable differences in 

fCM: 

∆𝑓 𝐶𝑀,𝑚𝑖𝑛 =
3𝜂

𝜀𝑓𝑟2 [(𝜇𝐷𝐸𝑃+
1

2
𝜇𝐷𝐸𝑃,𝑚𝑖𝑛) − (𝜇𝐷𝐸𝑃−

1

2
𝜇𝐷𝐸𝑃,𝑚𝑖𝑛)]   (23) 

 

3 Results 

In the following section, two scenarios will be addressed. In the first, the relationships 

described above are explored using typical field and gradient values achieved in published 

works. In the second scenario, resolution capabilities will be explored at the extent of highest 

reasonably achievable values (these values are limited by complicating factors such as heating or 

material breakdown). The values used for these two categories are listed in Table 1. They reflect 

numbers reported from experiments as well as those calculated via multi-physics modeling 

software (COMSOL) for existing g-iDEP designs. Note that most of the common values are 

within two orders of magnitude of the maximum values and extremely high-resolution 

separations have already been accomplished with this strategy.  

 

3.1 Calculated values under common and best case conditions 

Equation 22 can be used to estimate the smallest resolvable difference in radius for a 

given nominal radius (Figure 3A). This calculation includes an estimate of the diffusion 

coefficient (Ddiff) as a function of radius, according to the Einstein equation (Ddiff = RT/6r). 

The results indicate that the smallest resolvable difference at any radius is about 15 nm, and may 

be achieved when the nominal particle radius is approximately 1 µm. By dividing the smallest 

differentiable radius by the nominal radius, the relative resolving power can be estimated across 



a range of particle sizes. The result is approximately one part in 100. This proportionality is 

fairly consistent across particles ranging from one to ten microns in diameter. For a one-micron 

particle, the expected radius-based resolution should reach to ±10 nanometers.  

Using the above equations with higher field strengths or a redesigned microchannel 

would result in improved resolution. This would yield smaller minimum differentiable variations 

in analytes. The increased electric field values considered here were the highest noted 

occurrences in our models as well as in the literature (Table 1). These values are currently 

limited by experimental considerations such as solution or materials breakdown. Improved 

power supplies or other trivial strategies cannot functionally improve values beyond what is 

considered here. At these higher field and gradient values, the smallest resolvable change in 

radius is reduced to approximately 500 pm for nearly all particles in the range investigated 

(Figure 3B). 

Considering a particle with a diameter slightly less than one micrometer, the minimum 

resolvable difference in dielectrophoretic mobility from equation 21, for typical absolute 

magnitudes of operating fields and gradients, is about 10
-23

 m
4
/V

2
s for a particle with a nominal 

mobility of 10
-19

 m
4
/V

2
s (𝜇𝐷𝐸𝑃 = 𝜀𝑓𝑟2𝑓𝐶𝑀 3𝜂⁄ , f=10

-9
 F/m, r=10

-6
 m, fCM=-0.3,=10

-3
 Ns/m

2
,       

Figure 4A). This relationship also displays a fairly constant relative resolving power at around 

1:10
4
 or 0.01% of the dielectrophoretic mobility. The minimum resolvable change in 

dielectrophoretic mobility is reduced to 10
-26

 m
4
/V

2
s with a relative resolution of about 1:10

8
, for 

maximized field and gradient strengths -- some four orders of magnitude higher than the 

common experimental values (Figure 4B).  

Two factors that chiefly influence the profile of these relationships are the diffusion 

coefficient and the dielectrophoretic mobility (Figure 4C). 1) The diffusion coefficient becomes 

large and an important factor at small radii. It effectively increases dispersion at small radii, 

increasing the variance (
2
) and broadening the collected concentration profile. 2) The 

dielectrophoretic mobility ranges over several orders of magnitude, from 10
-23

 to 10
-17

 m
4
/V

2
s 

over the 20-nm to 10-micron range of this study. For larger DEP mobilities, the magnitude of the 

minimum resolvable value increases. However, comparing minimum to nominal values acts as a 

normalizing factor leaving the relative resolving power approximately constant across the range.  

Similar calculations were performed to determine the minimum resolvable difference in 

Clausius-Mossotti factor. The result is approximately one part in 10
5
 (Figure 5, red line) under 



standard conditions. The relative resolving power increased to 1:10
4
 or 0.01%. The assessment of 

the Clausius-Mossotti factor under optimal or maximum conditions results in a similar plot 

(Figure 5, blue line), but with the resolving power increasing to 1:10
8
 .  

 

4 Discussion 

The equations developed above suggest that a limited number of factors affect the 

resolution of a g-iDEP separation, including field strength (Eave and indirectly ∇|𝐸|2
𝑎𝑣𝑒), the 

local slope of the electric field at each gate (dE/dx and 𝑑(∇|𝐸|2)/𝑑𝑥), dispersive effects (DT, 

including diffusion Ddiff), and the gate-to-gate step-wise increase in (dEmax/dx and 𝑑(∇|𝐸|2
𝑚𝑎𝑥)/

𝑑𝑥). Each of these factors can be manipulated by adjusting channel geometry and applied 

potential. In general, increasing local field gradients (dE/dx and 𝑑(∇|𝐸|2)/𝑑𝑥), and decreasing 

gate-to-gate variation (dEmax/dx and 𝑑(∇|𝐸|2
𝑚𝑎𝑥)/𝑑𝑥) will improve resolution (Table 2). We 

note the maximum experimental values demonstrated in condensed phase aqueous solution are 

about 10
6
 V/m for Eave and 10

18
 V

2
/m

3 
for ∇|𝐸|2

𝑎𝑣𝑒 [30].We also note that other related forces 

can be harnessed to create a local trap, including electrothermal effects, while understanding that 

this effect may also add to dispersion. 

There are some subtle issues, which must be addressed when executing these 

calculations. For any given specific gate, and true for all of these calculations, the forces 

(velocities) must balance (µEK* Eave + µDEP*∇|𝐸|2
𝑎𝑣𝑒 = 0). Generally, electrokinetic mobility was 

used as an adjustable parameter, keeping well within ranges of known values from a very rich 

data set captured over decades via capillary electrophoresis in the literature. In some cases, the 

electric field (Eave) was adjusted. The dielectrophoretic mobility was not adjusted, since it was 

calculated from fundamental factors (radius, permittivity, etc.). In general, these values 

corresponded reasonably with real-world expectations. For instance, for a balanced target 

𝐸𝑎𝑣𝑒 = −
𝜇𝐷𝐸𝑃

𝜇𝐸𝐾
∇|𝐸|2

𝑎𝑣𝑒. Real values of µDEP can differ significantly from the simple Clausius-

Mossotti factor-based calculations, but this is relatively unimportant to the development of this 

theory [27, 31]. The actual values are bracketed in practice and these remain within 

reasonable value of the juxtaposing µEK * Eave product Using modeled values and multiplying 

the ratio of  
𝜇𝐷𝐸𝑃

𝜇𝐸𝐾
 by ∇|𝐸|2

𝑎𝑣𝑒 yields 10
6
 V/m. An Eave maximum value is approximately 10

6
 V/m 

before materials begin to breakdown. 



The Clausius-Mossotti factor (fCM) was set at -0.3, which is a reasonable value and results 

in a negative dielectrophoretic force. Mathematically and theoretically this factor only accounts 

for the polarizability of the particle, but in practice this factor turns into the catchall for 

differences in behaviors of otherwise-identical particle populations. The real physical origins of 

the forces on the particles arise from a diverse range of features, including size, shape, 

roughness, heterogeneity, internal structures, internal charge distribution, fluidity of internal 

structures, deformability, charge mobility, and interactions with local environment, all of which 

may or may not directly influence polarizability. Any difference in any of these features may 

result in a separation, although none of them are analytically accounted in the theory underlying 

fCM.  

Noting that  
𝐸𝑎𝑣𝑒

∇|𝐸|2
𝑎𝑣𝑒

= −
𝜇𝐷𝐸𝑃

𝜇𝐸𝐾
 for a given capture or balance point, the focusing can be 

maintained while minimizing Eave. This suggests that dynamic range can be extended with lower 

applied voltage capture, avoiding limitations in power supplies or physical breakdown of 

materials. However, this extension is juxtaposed by a decrease in resolution with lower Eave.  

The derivation presented herein ties the change in maximum local gradient between gates  

(dEmax/dx and 𝑑(∇|𝐸|2
𝑚𝑎𝑥)/𝑑𝑥) to the specific gate position along the channel (x). 

Conceptually, as the gate-to-gate separation approaches zero, the capture regions become 

arbitrarily close to each other and thus the continuous analysis is valid.[10, 32] One way our 

approach may be considered is to examine continuous functions which are sampled in either time 

or space and then analyzed and processed in sampled-data systems. Subsequently, the processed 

samples are used to reconstruct a continuous waveform [33]. Sampled data methods are not 

explored here, but serve to illustrate that such treatment is not unprecedented. Treating these 

values as continuous variables of x simplifies the derivation, but brings up a noteworthy caveat. 

In actuality, the local maxima which comprise dEmax/dx and 𝑑(∇|𝐸|2
𝑚𝑎𝑥)/𝑑𝑥 must occur at 

successive gates with a finite, non-zero x-axis separation. Physical implementation of arbitrarily-

close gates is not realizable. As the distance between gates becomes very small, the necessary 

local field maxima, Emax and ∇|𝐸|2
𝑚𝑎𝑥, decrease and eventually collapse into a smooth global 

gradient. Each gate creates a local disruption/maximum in the field, sufficient space is required 

for the field to return to its relaxed or average value before a new disruption/maximum can be 

created with an even higher value of ∇|𝐸|2. Furthermore, gates must be separated by a distance 



greater than the characteristic variance of a captured analyte. This distance may be estimated 

from the predicted peak width of a target population. As long as the physical separation between 

gates is several times the width of collected targets, the system is reasonable. 

This system can be operated with gates in parallel as well as in series with the same or 

similar results, and the derivation could be reconstructed to reflect such a design. A similar 

construct has been used to examine electrophoretic exclusion [34]. Relevant field maxima at 

each parallel gate element would need to be designed with sufficiently different values to capture 

non-mixed analyte populations. The work by Kenyon et al., utilized alongside the approach 

developed here would elucidate these values. 

A practical and important metric of resolution is ∆µEK,min and ∆µDEP,min. These two values 

allow direct comparison with other electrokinetic and dielectrokinetic techniques. In general, two 

scenarios are considered when assessing the theoretical resolution. Under common experimental 

values, ∆µEK,min = 2 x 10
-12 

m
2
/Vs (equation 20) and ∆µDEP,min = 10

-23
 m

4
/V

2
s (see Figure 4A). 

Current and past literature contain many examples of minimum resolvable electrokinetic values; 

this number is demonstrably better than any reported [34]. Such values are rarely reported for 

DC dielectrophoresis and thus cases for comparison are limited.  For the ‘best case’ scenario, 

limited by breakdown voltages for materials and maximal gradients, these become ∆µEK,min = 2 x 

10
-14 

m
2
/Vs and ∆µDEP,min = 10

-26
 m

4
/ V

2
s. One limitation for the high-resolution capabilities for 

electrokinetic effects is that the targets need appreciable dielectrophoretic force and therefore 

traditional targets smaller than 20 nm in diameter are not accessible.  

No quantitative studies have been published examining the peak width and resolution of 

g-iDEP, or any iDEP device for that matter. One major limitation is the lack of accepted standard 

materials of known dielectrophoretic properties. However, there are many clues suggesting the 

calculated bandwidths are reasonable and that the technique offers high-resolution separations. In 

the work of Staton et al. [23], 200 nm particles were focused into a band approximately three 

microns wide (Figure 2 in reference). Under the conditions of the experiment, the calculated 

bandwidth using the derivation here is one µm. This result is reasonable since there may be many 

sources of dispersion not explicitly included in this model for this study. Other experiments 

using iDEP show bandwidths for targets ranging from large molecules to 5-µm diameter 

particles in the range of 1-10 µm [35, 36]. The simple reason for these narrow peaks is the 

focusing slopes for this strategy are very large compared to other techniques. The ‘a’ factor 



(slope of restoring force) for focusing can reach 10
3
 s

-1
 whereas traditional techniques (IEF, 

gradient field systems) range from 10
-4

 to 10 s
-1

. Since our model does not yet include the 

dispersive effects of particle-particle interactions and lateral heterogeneity of the gate gradient, 

these results again suggest that the theory presented is reasonable.  

 

5 Conclusions 

The derivation presented here suggests that extremely high-resolution separations are 

possible for particles from 20 nm to 10 µm in diameter. These separations may reflect very 

subtle differences in the target particles. In fact, specific strains of bacteria have already shown 

significant differentiation using these forces [26, 37]. Used as ultimate benchmarks, the best case 

suggests that one part in 10
3
 differences in diameter (1 nm for a 1-µm particle) can be isolated, 

one part in approximately 10
8
 can be separated as measured by fCM or DEP,min. Compared 

with competing separations or analysis techniques, these offer orders of magnitude 

improvements. 
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Figures 

A      B 

 
Figure 1. A) Diagram depicting concentration of analyte at a gate structure within a g-iDEP 

microchannel. Peak width is a function of focusing factors associated with electrophoretic 

velocity (vEK) and dielectrophoretic velocity (vDEP) balanced with dispersive forces including 



diffusion (Ddiff). B) (upper image): Schematic representation of an entire g-iDEP device. (lower 

three panels): Detail of two gates within a g-iDEP microchannel. Below the gates are 

representations of the absolute magnitude of the centerline electric field strength and ∇|𝐸|2. The 

device shown here serves only illustrative purposes. Specific implementation and geometry of 

gates are flexible, and may be altered significantly depending on the desired application. Gates 

may also be operated in parallel, attaining the same resolution as expressed in this document. 

 

 

 
Figure 2. (Top) Illustration of three adjacent gates within a hypothetical g-iDEP channel. One of 

two target analytes is selectively captured and concentrated at the center gate. The other target 

analyte is captured at the gate to the right. (Bottom) Since gate pitch decreases along the channel 

in a determinate manner, distance is used to relate the resolvability of two target species. Note 

capture zones graphical are of finite width, indicating dispersive effects including diffusion, field 

inhomogeneity, electrothermal effects, diffusion and particle-particle interaction.  
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Figure 3 A) Plot showing the smallest change in radius (blue line) that can be resolved as a 

function of the nominal radius of a particle using experimentally common field and gradient 

values (see Table 1). Also plotted is the normalized ratio of smallest resolvable difference 

divided by the nominal radius (red line). Arrows emphasize axis associated with each plot line. 

Note smallest value is ~15 nm at ~one micron diameter and about 1:10
2
 can be separated. B) Plot 

showing the smallest change in radius (blue line) that can be resolved as a function of the 

nominal radius of a particle using maximum experimentally accessible field and gradient values 

(Table 1). Also plotted is the normalized ratio of smallest resolvable difference divided by the 

nominal radius (red line). Arrows emphasize axis associated with each plot line.  Note smallest 

value is ~500 pm at ~one micron diameter and about 1:10
4
 can be separated. 
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Figure 4 A) Examination of smallest difference in dielectrophoretic mobility (DEP.min) that is 

calculated to be resolvable using experimentally common values of electric field strength and 

gradient. Absolute values (blue line, left axis) and the ratio of the minimum resolvable value 

divided by the nominal dielectrophoretic mobility (red line, right axis) are shown. Arrows 

emphasize axis associated with each plot line. Note the smallest absolute value is about 10
-23

 

m
4
/V

2
s and relative values of about 1:10

4
 can be separated. B) Examination of smallest 

difference in dielectrophoretic mobility (DEP.min) that is calculated to be resolvable using 

maximum experimentally accessible values of electric field strength and gradient. Absolute 

values (blue line, left axis) and the ratio of the minimum resolvable value divided by the nominal 

dielectrophoretic mobility (red line, right axis—note: logarithmic) are shown. Arrows emphasize 

axis associated with each plot line. Note the smallest absolute value is about 10
-26

 m
4
/V

2
s and 

about 1:10
7
 can be separated. C) Plots of two of the most influential factors defining the 

minimum resolvable physical properties of particles via g-iDEP: average dielectrophoretic 

mobility (µDEP,ave) and diffusion coefficient (Ddiff). Arrows emphasize axis associated with each 

plot line. Note the diffusion coefficient becomes quite large at small particle diameters and the 

dielectrophoretic mobility becomes larger with increasing diameter.  
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Figure 5. Red line: Plot of smallest change in Clausius-Mossotti factor (FCM) that can be 

separated versus particle diameter, note that FCM is unitless and that this plots suggests that 

relative values of approximately 1:10
5
 can be resolved under experimentally common values of 

electric field strength and gradient. Blue line: Plot of smallest change in FCM (unitless) that can 

be separated versus particle diameter maximum experimentally accessible values of electric field 

strength and gradient, suggesting that differences as small as approximately 1:10
8
 can be 

resolved. 

 

 

Common input values 
    Eave ∇|E|

2
ave dE/dxave d∇|E|

2
/dxave Emax/dx ∇|E|2max/dx) 

V/m V
2
/m

3
 V/m

2
 V

2
/m

4
 V/m

2
 V

2
/m

4
 

1.4E+05 9.0E+14 -3.5E+09 3.1E+19 1.3E+07 2.5E+17 

       
Highest Experimentally accessible values 

   
Eave ∇|E|

2
ave dE/dxave d∇|E|

2
/dxave Emax/dx ∇|E|2max/dx) 

V/m V
2
/m

3
 V/m

2
 V

2
/m

4
 V/m

2
 V

2
/m

4
 

5.0E+06 1.0E+18 3.5E+11 3.1E+20 1.6E+08 1.1E+17 

 

Table 1. Common and maximum experimental values. A typical particle diameter is one micron 

for many dielectrophoretic experiments. Geometric factors (insulator-based dielectrophoresis) 

include gate-widths between 100 nm and 30 mm, global applied fields of 10
4
 V/m. These two 

factors and ranges therein allow for all calculated values.  
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Nominal Particle Radius (m) 

Minimum Resolvable CM factor at Given Radius 



 

 

Minimize Maximize Minimal, arbitrary, or not adjustable 

dEmax/dx Eave ∆µEK, min 

𝑑(∇|𝐸|2
𝑚𝑎𝑥)/𝑑𝑥 ∇|𝐸|2

𝑎𝑣𝑒 µEK 

 dE/dx ∆µDEP, min 

 𝑑(∇|𝐸|2)/𝑑𝑥 µDEP 

  DTOT 

 

Table 2. Maximizing resolution. Since diffusion (Ddiffusion) and average dielectrophoretic 

mobility (𝜇̅𝐷𝐸𝑃) are a function of radius and influence resolutin, these variables interact to give a 

minimum in the rmin.  

 

 

 


