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Abstract

Ants are a highly successful family of insects that thrive in a variety of habitats across the world. Perhaps their best-known
features are complex social organization and strict division of labor, separating reproduction from the day-to-day
maintenance and care of the colony, as well as strict discrimination against foreign individuals. Since these social
characteristics in ants are thought to be mediated by semiochemicals, a thorough analysis of these signals, and the
receptors that detect them, is critical in revealing mechanisms that lead to stereotypic behaviors. To address these
questions, we have defined and characterized the major chemoreceptor families in a pair of behaviorally and evolutionarily
distinct ant species, Camponotus floridanus and Harpegnathos saltator. Through comprehensive re-annotation, we show that
these ant species harbor some of the largest yet known repertoires of odorant receptors (Ors) among insects, as well as a
more modest number of gustatory receptors (Grs) and variant ionotropic glutamate receptors (Irs). Our phylogenetic
analyses further demonstrate remarkably rapid gains and losses of ant Ors, while Grs and Irs have also experienced birth-
and-death evolution to different degrees. In addition, comparisons of antennal transcriptomes between sexes identify many
chemoreceptors that are differentially expressed between males and females and between species. We have also revealed
an agonist for a worker-enriched OR from C. floridanus, representing the first case of a heterologously characterized ant
tuning Or. Collectively, our analysis reveals a large number of ant chemoreceptors exhibiting patterns of differential
expression and evolution consistent with sex/species-specific functions. These differentially expressed genes are likely
associated with sex-based differences, as well as the radically different social lifestyles observed between C. floridanus and H.
saltator, and thus are targets for further functional characterization. Our findings represent an important advance toward
understanding the molecular basis of social interactions and the differential chemical ecologies among ant species.

Citation: Zhou X, Slone JD, Rokas A, Berger SL, Liebig J, et al. (2012) Phylogenetic and Transcriptomic Analysis of Chemosensory Receptors in a Pair of Divergent
Ant Species Reveals Sex-Specific Signatures of Odor Coding. PLoS Genet 8(8): e1002930. doi:10.1371/journal.pgen.1002930

Editor: Nancy A. Moran, Yale University, United States of America

Received March 27, 2012; Accepted July 16, 2012; Published August 30, 2012

Copyright: � 2012 Zhou et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was funded by Howard Hughes Medical Institute Collaborative Innovation Award #2009005 (http://www.hhmi.org/news/20081120.html).
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: l.zwiebel@vanderbilt.edu

. These authors contributed equally to this work.

Introduction

The family of insects commonly known as ants (family

Formicidae) originated during the Cretaceous period, approxi-

mately 140 million years ago [1]. Since that time, they have

established a global presence, with only the most remote locations

lacking ant species [2]. Indeed, in some cases, such as lowland

tropical rainforest canopies, ants have come to dominate the

biomass [3,4]. Their ecological success is reflected in the number

and diversity of ants, of which there were 283 known genera [5].

There is a wide diversity in the behavior and morphology of

different ant subfamilies that includes both the level and

complexity of social organizations. For instance, Camponotus

floridanus (the Florida Carpenter Ant), is a Formicine ant from

the South-Eastern United States which belongs to one of the most

globally prevalent ant genera [6]. These ants feature a rigid caste

structure, with strict division of labor between the reproductive

queens and the non-reproductive workers that is primarily

regulated through pheromones [7,8,9]. Workers have a high

threshold to lay eggs, and regulation of their reproduction through

aggressive interactions does not occur [10]. Furthermore, the

worker caste is divided into two classes: minor workers and major

workers, which differ in size and morphology [2,6]. On the other

hand, Harpegnathos saltator, a predatory species of Ponerine ant

endemic to India and Sri Lanka is characterized by a more flexible

reproductive system. H. saltator colonies are relatively small

(averaging 65 to 225 individuals, depending on season and region)

[11], and queen to worker dimorphism is weak [11,12]. When a H.

saltator colony loses its queen, one or more of the workers will begin

laying eggs and become functional reproductives (referred to as
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gamergates) [12] and this behavioral transition is initiated with

strong aggressive interactions [13].

Sociality in ants is considered to be a simple model for complex

behaviors in humans and other mammals [14]. The success of ants

is thought to have arisen in large part from their well-developed

eusociality, wherein individuals live together in colonies with one

or several highly fertile female ‘‘queens’’ surrounded by a host of

non-reproductive female ‘‘workers.’’ These workers then support

and defend the queen and her progeny. The fact that the workers

are the queen’s own daughters is thought to provide the

evolutionary advantage for the workers to protect and support

the queen [6].

While it is generally accepted that a variety of chemical signals

mediate many of the interactions between these castes, as well as

interactions between individuals from competing colonies, there is

great interest in determining the particular pheromones and their

cognate molecular receptors that mediate these interactions [2]. It

is likely that these semiochemicals are initially detected in

peripheral sensory neurons by members of three major insect

chemosensory receptor gene families: odorant receptors (Ors)

[15,16,17,18,19], gustatory receptors (Grs) [15,20,21,22,23], and

the more recently discovered variant ionotropic glutamate

receptors (Irs) [24,25,26].

Ors and Grs belong to the same superfamily and both encode

seven-transmembrane-domain proteins [17,22]. Ors are mainly

expressed in olfactory receptor neurons (ORNs) within sensory

appendages such as antennae and maxillary palps, where they are

responsible for the perception of volatile chemical signals [17,19].

Conventional insect Ors (so-called ‘‘tuning’’ Ors) are associated

with odorant specificity. They are typically highly divergent and

their orthologous relationships are usually difficult to determine

even within order (e.g. Drosophila vs. Anopheles [27], and Nasonia vs.

Apis [28]). In contrast, one member of this gene family, which is

now uniformly known as Orco, is both highly conserved across

insect orders and widely expressed in a majority of ORNs [29,30].

Orco is necessary and sufficient for the proper localization and

retention of other tuning Ors at the dendritic membrane, and is

required for proper function of tuning Ors [29,31]. Rather than

playing a role in odorant specificity, Orco forms an essential part

of a heteromeric ion channel in cooperation with a tuning Or that

is gated by its cognate odor ligand [32,33,34,35,36].

In contrast with the Ors, Grs are highly expressed in gustatory

organs [20,21,22], and a large portion of these receptors respond

to soluble tastants [37,38,39] and pheromones [40,41,42], leading

to the ‘‘gustatory’’ designation for this group of chemoreceptors.

However, there are some exceptions; for example, one unusual

group of Grs respond to the volatile chemical carbon dioxide

[43,44], demonstrating that members of this receptor family are

not necessarily limited to gustatory or pheromonal responses. This

is further supported by the expression of some Grs in non-gustatory

organs such as the arista and Johnston’s organ [45].

Irs are homologous to ionotropic glutamate receptors (iGluRs)

and thus are evolutionarily unrelated to Ors and Grs [24,26]. The

role of IRs as chemosensory receptors has recently been uncovered

based on multiple lines of evidence, including their divergence

from conventional iGluRs at sequence level and the expression of

several Irs in chemosensory neurons [24]. While Irs are generally

thought to mediate responses to acids and amines [25], members

of this family of chemosensory receptors may also sense other

classes of chemicals.

We hypothesize that the striking contrast between C. floridanus,

with its strict queen-worker dimorphism and largely pheromone-

regulated reproduction, and H. saltator, with its flexible reproduc-

tive system that is associated with behavioral and pheromonal

regulation of reproduction, is correlated with distinctive semi-

ochemical and chemoreceptor profiles, which in turn generate

differences in their chemical ecologies. The same is likely to be true

of caste- or sex-based differences in behavior within each species.

To test these hypotheses, we first developed a custom gene

annotation pipeline to comprehensively describe the chemosenso-

ry receptor repertoires of C. floridanus and H. saltator. We then

investigated the evolutionary patterns (e.g. gene gain-and-loss) of

these chemosensory receptor genes, in order to gain insight on

their functional diversification. Furthermore, we performed

RNAseq analyses of caste- and sex-specific antennal transcrip-

tomes to identity chemoreceptors that are differentially expressed

between males/females and between species. We found multiple

clades of chemosensory receptor genes that show differential

expansion/contraction among ant species. In addition, a large

number of chemosensory receptor genes exhibited sex-specific

expression or male/female-enrichment. These chemosensory

receptor genes exhibiting interesting evolutionary and expression

patterns may have potentially contributed to the different chemical

ecology between sexes/species. We also successfully identified

agonists for two Or genes to further validate these annotations. The

findings of this study inform us as to the genetic basis for the

differences in chemical ecology between C. floridanus and H. saltator,

as well as the potential role of chemosensory receptors in the

biology and evolution of eusociality in ants.

Results

Annotation of C. floridanus and H. saltator chemosensory
receptor genes

The automated genome annotations of C. floridanus and H.

saltator revealed about 100 Or and about 10 Gr genes [46], which is

substantially fewer than the number of Or and Gr genes in two

other sequenced ant genomes (e.g. argentine ant: Linepithema humile

[47], and harvester ant: Pogonomyrmex barbatus [48]; Figure 1).

These low numbers were not surprising because the annotation of

Or/Gr genes in other insect genomes has been difficult and usually

Author Summary

Chemical communication is an important factor in the
regulation of social interaction in animals. The family of
eusocial insects commonly known as ants offers an almost
unique opportunity for examining the genetic basis for the
chemosensory pathways that underlie ant sociality. In
order to address this issue, we have manually and
comprehensively reannotated the chemoreceptor reper-
toire in a pair of evolutionarily and behaviorally divergent
ant species, Camponotus floridanus and Harpegnathos
saltator. In addition, we have used next-generation RNA
sequencing to examine the chemosensory receptor tran-
scriptome between males and females within these
species. Our analysis demonstrates rapid gene birth-and-
death for the ant odorant and gustatory receptor gene
families, as well as clear differences in the expression of
particular subsets of chemoreceptor genes between males
and females. Finally, we have begun to examine the odor
space within these discrete social units by heterologous
characterization of the first C. floridanus odorant receptor
that also exhibits sex-specific differential expression. Taken
together, our results provide a foundation for future
studies of the genetic basis for the chemical signaling and
chemical ecology underlying the dramatically different
social lifestyles exhibited by these and other species of
ants.

Analysis of Ant Chemosensory Receptomes
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requires extensive manual efforts [47,48]. In order to address this

potential discrepancy and comprehensively elucidate the genomic

repertoire of chemosensory receptor genes in C. floridanus and H.

saltator, we rigorously re-annotated Or, Gr, and Ir genes in these two

ant species using a custom automated pipeline followed by careful

manual inspection.

To maximize the sensitivity of our re-annotation, we collected

reported Or, Gr, and Ir gene sequences from other sequenced

Hymenoptera and insect relatives of C. floridanus and H. saltator,

including Apis mellifera, Acyrthosiphon pisum, Drosophila melanogaster,

Nasonia vitripennis, L. humile, and P. barbatus. These insect

chemosensory receptor genes were used to identify putative Or/

Gr/Ir coding regions within the C. floridanus and H. saltator genomes

and to guide homology-based gene prediction. As a result, we

discovered a large number of previously unannotated chemosen-

sory receptor genes and corrected several previously reported gene

models [46]. All these annotations were manually inspected in

multiple sequences alignments to identify and correct for potential

errors (e.g. missing exons, unrelated sequences). This analysis

indicates that C. floridanus contains 407 putative Or coding loci, of

which 352 loci encode intact Or genes, which is similar to those

newly annotated in H. saltator, with 377 loci in total and 347 intact

loci (all chemosensory receptor genes annotated in this study are

available in Dataset S1). The number of Ir predictions is also

similar between the two ants, with 31 Ir genes in C. floridanus and

23 in H. saltator. On the other hand, C. floridanus contains 46 intact

Gr genes, which is significantly higher than the 17 intact Gr genes

found in H. saltator (Figure 1). Moreover, all three families of

chemosensory receptor genes exhibited high degrees of sequence

divergence among family members (Table S1).

In addition to the chemosensory receptor genes listed above, we

also found a large number of incomplete gene models in these two

ant genomes. For example, in C. floridanus and H. saltator, there are

respectively ,100 and ,80 Or gene models encoding proteins

shorter than 300 amino acids. In parallel to the difference in intact

Gr genes, only three fragmented Gr gene models were found in H.

saltator, while C. floridanus has ,30 short Gr genes. Close

examination of their genomic sequences revealed two principal

mechanisms apparently leading to these fragmented Or/Gr gene

models: 1) the presence of multiple frame-shift mutations and

premature stop-codons, suggesting that they represent pseudo-

genes; and 2) their locations around undetermined genomic

regions (e.g. edges of contigs/scaffolds), indicative of incomplete

assembly as expected from a draft genome. The latter mechanism

explains about 80% of the incomplete gene models.

Furthermore, similar to other insects [28,47,48,49,50,51], most

chemosensory receptor genes are tandemly arrayed in the C.

floridanus and H. saltator genomes. In both cases, about 75% of Or

genes are located in gene clusters of 4 to about 40 genes, and these

occur in 24 and 20 Or gene clusters (n$4) in C. floridanus and H.

saltator, respectively (Figure S1). Although to a lesser degree than

the Ors, half of the Gr and Ir genes in both ants have at least one

neighboring homolog.

Phylogenetic analysis
To better understand the evolutionary history of chemosensory

receptor genes in the two ant species, we performed Hymenop-

tera-wide phylogenetic analysis on each of the OR, GR, and IR

gene families. Additional analyses including D. melanogaster and

Tribolium castaneum showed that most relationships among hyme-

nopteran and non-hymenopteran sequences were not resolved

within the OR and GR families (see below). In this study, while they

are generally categorized as belonging to the same receptor

superfamily [22], we elected to analyze the OR and GR families

separately due to their high level of divergence.

OR family. Our phylogenetic analysis of hymenopteran Or

genes revealed a highly dynamic evolutionary history of this gene

family featuring rapid gene birth and death (Figure 2A). Due to the

rapid divergence of Or genes (average amino acid distance = 2.56;

overall protein sequence identity = 19.45%), most deep relation-

ships in the OR phylogeny lacked support (see Figure S2 and

Dataset S2 for the full version of OR phylogeny with gene names

and bootstrap values). In spite of this, we found 24 well-supported

clades (referred to as subfamilies; A-V, Orco, and 9-exon in Figure 2),

each potentially representing one Or gene copy in the common

ancestor of Hymenoptera (also see Figure S3 for the OR phylogeny

with D. melanogaster and T. castaneum sequences). These subfamilies

exhibited vastly different patterns of expansion/contraction, which

can be divided into three types (Figure 2A, 2B): 1) strict single-copy

representation in each of the six analyzed hymenopterans was

Figure 1. Annotation of C. floridanus and H. saltator chemosensory receptor genes. Number of Or, Gr, and Ir gene predictions in six
hymenopteran species. For Or and Gr genes, the number to the right is the number of all gene models (coding for proteins longer than 300 aa in C.
floridanus and H. saltator, or 200 aa in other species), while the number to the left is the number of seemingly intact gene models.
doi:10.1371/journal.pgen.1002930.g001

Analysis of Ant Chemosensory Receptomes
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observed for the Orco subfamily, which is the only Or gene with

clear orthologous relationships throughout insects

[15,28,50,51,52,53,54] (Figure S3); 2) 11 subfamilies showed

either gene loss only, or a limited number of gene duplication

events (e.g. B and C); 3) the remaining 12 subfamilies had

experienced substantial expansions within and/or shared by

hymenopteran lineages (e.g. A and D).

In particular, the most dramatic expansion was found in the

subfamily composed of Or genes with 9 exons (Figure 2A, 2B). This

9-exon subfamily encompasses more than 30% of the entire

repertoires of Or genes in the six hymenopterans, which is in

agreement with previous observations in other ants [47,48].

Furthermore, our analysis revealed highly dynamic Or evolution

within these subfamilies; subclades were often differentially

expanded and/or contracted in different species and rapid

expansions were usually accompanied by frequent gene losses

(Figure S4).

As described above, most Or genes in C. floridanus and H. saltator

were found in tandem arrays in their respective genomes. Our

phylogenetic results provided further evidence that these clustered

Or genes were derived from tandem whole-gene duplication

events. Moreover, more than 60% of all tandem duplicates in the

two ants were due to lineage-specific expansions, while the others

were generated during or even before the divergence of

Hymenoptera. For example, the neighboring Or genes on C.

floridanus scaffold538 and H. saltator scaffold105 belonged to four

different subfamilies, suggesting that these two gene clusters were

established before the divergence of the six hymenopterans, and

underwent further expansion within each lineage (Figure S5).

Although Hymenoptera-wide orthology of Or genes may have

been obscured by rapid gene gain and loss, we were still able to

identify several clear 1-to-1 relationships among Formicidae. In

total, we found 35 ant-specific clades that are composed of a single

copy of Or gene from each of the four ants. Among these, genes in

30 clades are located in gene clusters while all others occur as

singletons. A chi-square test showed that neither tandem

duplicates nor singletons are significantly enriched in the 35

orthologous gene clades (p-value = 0.05).

GR family. Similar to the OR family, the GR phylogeny

provided evidence for birth-and-death evolution in this family

(Figure 3; see Figure S6 and Dataset S3 for the full version of GR

phylogeny with gene names and bootstrap values). Within the Gr

phylogeny, 13 well-supported subfamilies were found, most of

which were likely generated by ancestral duplications before the

divergence of Hymenoptera (although the precise relationships

among them remained unresolved). Within Hymenoptera, ances-

tral duplications and/or lineage-specific expansions were found in

most subfamilies, except for the GR1 and GR2 subfamilies. Indeed,

significant lineage-specific expansions of ant Gr genes include the

GR3 (L. humile and P. barbatus) and GR8/9 (C. floridanus) subfamilies.

The most dramatic expansion was observed in an ant-specific

subfamily which underwent multiple rounds of amplifications

Figure 2. Phylogenetic relationships of Hymenoptera Or genes. (A) A maximum-likelihood tree of hymenopteran Or genes estimated by
using RAxML with Le-Gascuel (LG) model. Reliability of internal nodes was evaluated by 100 bootstrap replicates. Grey round dots indicate well-
supported subfamilies (bootstrap value $80). Bootstrap values $70 are shown for relationships among subfamilies. Ors in different species are color-
coded as following: N. vitripennis, black; A. mellifera, purple; H. saltator, blue; L. humile, yellow; P. barbatus, green; and C. floridanus, red. Subfamilies
with rapid changes in gene copy numbers are highlighted in red. (B) Numbers of hymenopteran Or genes in well supported subfamilies.
doi:10.1371/journal.pgen.1002930.g002
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before and after the separation of H. saltator, especially within C.

floridanus and L. humile. In contrast to the other three ants, H.

saltator specific duplication was only observed once (in the GR4

subfamily), which explains the low number of Gr genes in this

species. Moreover, our GR phylogeny showed that the formation

of Gr gene clusters was likely due to tandem duplication,

highlighting the importance of this duplication mechanism in the

evolution of chemosensory receptor genes.

Among the Grs, orthologs of the known sugar receptor genes

(Gr1 and Gr2) [55,56,57,58] and another insect-wide conserved Gr,

D. melanogaster Gr43a (Gr3) [28,53,54], were observed in all of the

species examined (also see Figure S7 for the GR phylogeny with D.

melanogaster and T. castaneum sequences). However, no orthologs of

the well-described dipteran carbon dioxide (CO2) receptor genes

[43,59] were found (Figure S7), consistent with the proposed loss

of dipteran CO2 receptors in the ancestor of Hymenoptera [60].

Interestingly, it is known that the ability to perceive CO2 is present

in ants [61], suggesting that different receptor genes are involved.

IR family. Unlike Ors and Grs, Ir genes have maintained

relatively stable copy numbers during ant evolution (Figure 4; see

Figure S8 and Dataset S4 for the full version of IR phylogeny with

gene names and bootstrap values). While multiple duplications are

likely to have occurred in the ancestor of Formicidae, unambig-

uous orthology among H. saltator, C. floridanus, L. humile, and P.

Figure 3. Phylogenetic relationships of Hymenoptera Gr genes. A maximum-likelihood tree of hymenopteran Gr genes estimated by using
RAxML with Le-Gascuel (LG) model. Reliability of internal nodes was evaluated by 100 bootstrap replicates. Grey round dots indicate well-supported
subfamilies (bootstrap value $80). Bootstrap values $70 are shown for relationships among subfamilies. Subfamilies showing interesting
evolutionary patterns are named after the orthologs in N. vitripennis and A. mellifera. The other subfamilies are named as A–H. Grs in different species
are color-coded as following: N. vitripennis, black; A. mellifera, purple; H. saltator, blue; L. humile, yellow; P. barbatus, green; and C. floridanus, red.
doi:10.1371/journal.pgen.1002930.g003
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barbatus genes has been maintained across most IR clades. The

only lineage-specific expansion of ant Ir genes occurred in the

IR317 subfamily, in which the number of C. floridanus genes

increased from 1 to 7, partially due to tandem duplications. The

evolutionary history of Ir genes across Protostomia (e.g. nema-

todes, arthropods, and molluscs) has been described, where Ir

genes are classified into ‘‘antennal IRs’’, which are more

conserved, and ‘‘divergent IRs’’; of the seven antennal IRs, one

(IR21a) was only found in N. vitripennis [26]. Nevertheless, orthologs

of the other 6 antennal IRs, including IR8a, IR25a, and IR76b

(which are thought to code for Ir co-receptors, that may play

similar roles as the Orco Or coreceptor) [24,25], as well as IR68a,

IR75u/f, and IR93a,—were found in ants (also see Figure S9 for

the IR phylogeny with D. melanogaster and T. castaneum sequences).

In addition, there were 13 other subfamilies of divergent IRs. Of

these divergent IRs, no ortholog is present in the genome of N.

vitripennis and only one is found in A. mellifera, which could be due

to ant specific duplications and/or preferential retention of these

divergent IRs occurred in ants.

Evolutionary dynamics
To further understand the evolutionary dynamics of chemo-

sensory receptor genes, we quantified the gene birth and death

events and estimated the number of ancestral gene copies in each

family using both the maximum-likelihood (ML) and the

parsimony based methods implemented in CAFÉ [62] and

Notung [63], respectively. For all three families, the ML method

suggested relatively high copy numbers in the ancestor of

Hymenoptera (Figure 5). For instance, it estimated a repertoire

of 266 Or genes in the hymenopteran ancestor, which was

expanded in all ant lineages, but significantly contracted in both N.

vitripennis and A. mellifera. A similar pattern was also observed in

both the GR and IR families. Moreover, the ML analysis suggested

Figure 4. Phylogenetic relationships of Hymenoptera Ir genes. A maximum-likelihood tree of hymenopteran Ir genes estimated by using
RAxML with Le-Gascuel (LG) model. Reliability of internal nodes was evaluated by 100 bootstrap replicates. Grey round dots indicate well-supported
clades of ‘‘antennal’’ or ‘‘divergent’’ IRs (bootstrap value $80). Bootstrap values $70 are shown for relationships among the well supported clades.
Subfamilies are named after the orthologs in L. humile and P. barbatus. Irs in different species are color-coded as following: N. vitripennis, black; A.
mellifera, purple; H. saltator, blue; L. humile, yellow; P. barbatus, green; and C. floridanus, red. Clades for ‘‘antennal IRs’’ are highlighted in red. The
clades for ionotropic glutamate receptors were collapsed.
doi:10.1371/journal.pgen.1002930.g004
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that the low number of Gr genes in H. saltator is due to a significant

gene loss in this lineage.

On the other hand, the parsimony approach gave conservative

estimates of ancestral copy numbers and showed that many more

gene-gain events occurred during later stages of hymenopteran

evolution. According to the parsimony analysis, the number of Or

genes increased from 25 in the last common ancestor of

Hymenoptera to about 200 in N. vitripennis and A. mellifera, and

more than 300 in all four ants (Figure 5A). Most notably, the

repertoire of Or genes increased by three-fold in the ancestor of

ants (from 51 to 204 copies), after the separation of A. mellifera, and

continued to expand greatly along each ant lineage. Interestingly,

although to a lesser degree, the ML method also identified

significant expansion on the branch leading to the ant ancestor. In

addition to the large number of gene gains, substantial gene losses

also occurred in all ants. On the other hand, most duplications of

ant Grs occurred in C. floridanus, L. humile, and P. barbatus, while

there were only one gene gain and four gene loss events on the

lineage to H. saltator (Figure 5B). Similar to the OR and GR

families, the number of Ir genes also doubled in the ancestor of

ants after its separation from other Hymenoptera (Figure 5C).

Subsequent increase of Ir gene number was only observed in C.

floridanus and L. humile.

Overall, the ML and parsimony analyses gave different

estimates of the ancestral copy numbers and gene gain and loss

events. The ML method assumes a random gene birth and death

process [64], which is significantly violated by both the OR and GR

families (p-values,0.01). On the other hand, the parsimony

approach aims to minimize the number of gene gain and loss

events, and thus might underestimate the number of ancestral

copies. Nonetheless, both analyses support the hypothesis that

chemosensory genes have distinct evolutionary dynamics in ant

lineages in comparison to the other two hymenopterans.

Antennal expression profiles of ant chemosensory
receptor genes

In insects, most Ors and some Grs/Irs are expressed in antennal

ORNs [18,24,49,65]. As best illustrated in studies of the Drosophila

olfactory system, each ORN expresses a single tuning Or which is

responsible for the odorant response profile and all the ORNs

expressing that singular tuning Or send axonal connections to a

single antennal lobe glomerulus thereby providing a mechanistic

basis for the initial stages of odor coding [18]. Therefore, we

analyzed antennal transcriptomes of workers and males for both C.

floridanus and H. saltator, to identify chemosensory receptor genes

that are differentially expressed between castes (minors and majors

in C. floridanus) and between different sexes, and which might play

salient roles in social communication (see Table S2 for information

on transcriptome datasets).

We performed pairwise comparisons between males and

females within C. floridanus and H. saltator (Dataset S5). At the

whole transcriptome level, there was a very high similarity

between major and minor worker of C. floridanus (r2 = 0.99; Figure

S10A), while greater diversity was found between workers and

males (r2 values around 0.85 for all comparisons), largely due to

mild up-regulation of many genes in males (Figure S10B, S10C).

Similar trends were also observed for chemosensory receptor genes

(Figure S10D).

OR family. In both sexes of C. floridanus and H. saltator, the

ortholog of Orco was consistently the most highly expressed Or

gene. It accounted for ,15%–20% of all the Or gene expression in

C. floridanus and ,6%–8% in H. saltator. For the repertoire of

tuning Ors within each species, almost all of them were expressed

in workers at levels above the medians of their respective antennal

transcriptomes (which was used as the criterion for expression

versus non-expression of chemosensory gene in the present study).

In contrast, only one third of the tuning Or genes were expressed in

males of both ants. These comparisons identified almost 40 Ors in

C. floridanus and 120 Ors in H. saltator that displayed significant

differential expression between workers and males (Table 1,

Dataset S5). Interestingly, ,95% of these genes were enriched in

workers, almost all of which had below-median expression levels in

males. In addition, we found 13 Or genes that were differentially

expressed between major and minor workers of C. floridanus

(Table 1, Dataset S5). However, the log2 fold-changes of these

genes (less than 1.5) were much lower than those of the genes

(greater than 3) revealed in worker vs. male comparisons.

To investigate the relationship between evolutionary relatedness

and expression regulation of Or genes, we mapped results of

worker vs. male comparisons to the phylogeny of C. floridanus and

H. saltator Or genes. As shown in Figure 6A, there are multiple

examples where Or genes in one ant species showed sex-specific-

enrichment patterns similar (or opposite) to closely related

homologs in the other ant species. Notably, the 9-exon Or subfamily

illustrates both situations described above (Figure 6B, 6C). In the

three basal clades, C. floridanus genes were mostly enriched in male,

while all but one H. saltator gene had higher expression levels in

workers (Figure 6B). In contrast, all the remaining Or genes formed

a well-supported monophyletic clade and almost all of them were

enriched in workers for both C. floridanus and H. saltator (Figure 6C).

We further examined the expression patterns of (co-)orthologous

genes in the two ant species. Using bootstrap values of 70 as

threshold, we delineated 98 orthologous groups of C. floridanus and

Figure 5. Estimated numbers of gene birth-and-death events and ancestral gene copies for chemosensory gene families. (A) OR
family. (B) GR family. (C) IR family. The results of CAFÉ and Notung are highlighted in blue and red, respectively. Numbers above branches indicate net
copy number changes estimated by CAFÉ. Numbers below branches with plus and negative signs indicate the number of gene gain and loss events
estimated by Notung, respectively. Single asterisk indicates significant branch-specific expansions/contractions. Double asterisk indicates gene
families that significantly violate the random gene birth and death assumption of CAFÉ. The phylogeny of Hymenoptera and the time scale are from
[1,102].
doi:10.1371/journal.pgen.1002930.g005

Table 1. Significantly differentially expressed C. floridanus
and H. saltator chemosensory receptor genes revealed by
analysis of antennal transcriptomes.

Species Comparison OR GR IR

C. floridanus Major worker vs.
Male

38 (1) 0 (0) 1 (1)

Minor worker vs.
Male

42 (1) 0 (0) 1 (1)

Major vs. minor
worker

13 (0) 2 (1) 0 (0)

H. saltator Worker vs. Male 120 (4) 1 (0) 2 (2)

Significantly differentially expressed genes were identified by using Cuffdiff (q-
value#0.05). Number in bracket indicates the number of genes with higher
expression level in male (or minor worker in the major worker vs. minor worker
comparison).
doi:10.1371/journal.pgen.1002930.t001
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H. saltator Or genes, of which 41 groups included at least one gene

from each ant species being differentially expressed by at least two-

fold between males and females. C. floridanus and H. saltator genes

were enriched in the same sex in 29 of the 41 groups and in

different sexes in other 10 groups (Table S3). The remaining 2

groups showed conflicting expression patterns within species.

GR family. Unlike Or genes, only a portion of Gr genes within

each species were expressed in workers (less than 25% for C.

floridanus and ,35% for H. saltator) and males (less than 15% for

both ants) (Figure 7A). Furthermore, worker vs. male comparisons

revealed only one H. saltator Gr gene that was differentially

expressed between worker and male (HsGr7), and none in C.

floridanus. While two C. floridanus Gr genes were found to have

differential expressions between major and minor workers (CfGr9

and CfGr54), their absolute expression values were close to or

below the median of their respective transcriptomes.

IR family. 50% or less of Ir genes of each species were

expressed in any given sex (Figure 7B), and almost all expressed Ir

genes are conserved ‘‘antennal IRs’’. We identified only one C.

floridanus Ir gene and two H. saltator Ir genes that have differential

expressions between workers and males. Interestingly, all of these

Ir genes were enriched in male. The ortholog of IR8a, encoding

one of the Ir co-receptors [24,25], was differentially expressed in

both C. floridanus and H. saltator, and was also the most highly

expressed Ir gene in males of both ants, while another ‘‘antennal

IR’’ (HsIR75u.2) was also found to be more highly expressed in H.

saltator males than in workers.

Identification of a ligand for a differentially expressed ant
odorant receptor

In order to validate our bioinformatic annotations and in an

attempt to link functional data to the antennal expression data, we

have cloned a small subset of 14 C. floridanus and H. saltator Or

genes, drawn from 6 subfamilies in the Or phylogeny (D, E, H, L,

V, and 9-exon). These include four genes (CfOr263, HsOr212,

HsOr213, and HsOr279) that display significant differential

expression in our transcriptome analysis (see Methods and

Materials for full list). This allowed us to carry out deorphanization

studies to decipher the odorant response profiles of these receptors

through the use of two-electrode voltage clamp recordings in

Xenopus oocytes heterologously expressing ant Ors [44,66]. After

first confirming that the C. floridanus and H. saltator Orco proteins

showed coreceptor function in combination with a previously

Figure 6. Diversified expressions of evolutionarily related Or genes. (A) Expression profiles of C. floridanus and H. saltator Ors shown along
with the phylogeny of Or genes. In the phylogenetic tree, C. floridanus Ors are labeled by red and H. saltator Ors by blue. In the heat-map, red color
indicates higher expression level in worker and green indicates higher expression level in male. The inner circle shows the relative expressions of C.
floridanus Ors between major worker and male (comparison between minor worker and male not shown because of the highly similar expression
profiles of C. floridanus major and minor workers); the outer circle shows the relative expressions of H. saltator Ors between worker and male. FPKM
stands for Fragments Per Kilobase of exon per Million fragments mapped. (B) Expression levels of Ors belonging to the three basal clades in the 9-
exon subfamilies. C. floridanus Ors had significantly higher expression in male (p-value,0.05; Wilcoxon ranked-sum test), while H. saltator Ors had
significantly higher expressions in worker (p-value,1e-4; Wilcoxon ranked-sum test). (C) Expression levels of the remaining Ors in the 9-exon
subfamilies. For both C. floridanus and H. saltator, Ors had significantly higher expressions in worker (p-value,1e-15; Wilcoxon ranked-sum test). Short
lines indicate median expression levels for each gene set. For both panels (B) and (C), genes expressed below the medians of their respective
transcriptomes were labeled by grey.
doi:10.1371/journal.pgen.1002930.g006
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deorphanized mosquito tuning Or (Figure 8A, 8B), candidate ant

tuning Ors were screened against a panel of 73 unitary and

complex stimuli (Table S4). These stimuli consisted of a variety of

general odorants, as well as hydrocarbons known to be produced

by H. saltator or C. floridanus.

Out of the 14 tuning Ors initially screened, CfOr263 (from OR

subfamily D; Figure 2), which is highly expressed in workers as

compared to males (Figure 6A), produced specific and dose-

dependent responses to 2,4,5-trimethylthiazole (Figure 8D, 8F), a

naturally occurring odorant found in cooked beef and pork [67]

found in the library of general odorants that we screened. An

additional Or from H. saltator, HsOr55 (from OR subfamily L;

Figure 2), showed a dose-dependent response to another odorant

from our general odorant library, 4-methoxyphenylacetone

(Figure 8E, 8G), which is a naturally occurring odorant found in

anise essential oil [68]. However, this particular Or has not been

shown to be differentially expressed between males and females. It

should also be noted that, as is the case for most ant Ors, both

receptors have multiple closely related homologs that may possess

similar chemosensory functions (Figure 6A).

Discussion

Expanded ant chemosensory receptor repertoire
We have developed and used a dedicated annotation scheme to

comprehensively elucidate the repertoire of chemosensory recep-

tor genes in both C. floridanus and H. saltator. Through exhaustive

homology search and careful manual curation, we significantly

improved upon previous studies to identify roughly equivalent

numbers of Or/Gr/Ir genes in the genomes of C. floridanus and H.

saltator as compared to two other sequenced ant genomes [47,48],

providing a solid foundation for subsequent study.

It is striking that, in general, ants have the most expanded

repertoire of chemosensory receptor genes in Hymenoptera

(Figure 1). The numbers of ant OR and IR family members are

much greater than those of the other two hymenopteran genomes

currently available. Indeed, thus far, ant genomes have the largest

number of Or genes among all insects [69]. Furthermore, although

the number of the Gr genes varies greatly among hymenopterans

and also within ants, L. humile carries the largest Gr family; it has

about 2- and 10-fold more Grs than N. vitripennis and A. mellifera,

respectively. Interestingly, although ants and honey bees are both

social insects, ants have much larger repertoires of all three

chemosensory receptor gene families than honey bees, possibly

indicative of a more sophisticated communication system relying

on chemicals [70].

Our phylogenetic analyses of hymenopteran chemosensory

receptor genes reveal distinct evolutionary patterns among gene

families. Among chemosensory receptors, the OR family shows the

most dramatic birth-and-death evolution, with many OR subfam-

ilies displaying diversified patterns of gene gain-and-loss. For

example, the 9-exon subfamily and others have experienced rapid

gene duplications at almost all stages of Hymenoptera evolution,

followed by numerous losses of duplicates. In contrast, there are 35

subclades that have only one ortholog in all four ants. Further, the

IR family has maintained relatively stable copy numbers in ants;

lineage-specific expansion only occurred in C. floridanus and L.

humile for two of the 13 ‘‘divergent IRs’’. In between these extremes

is the GR family that has expanded moderately in N. vitripennis and

three of the four ants.

Recent studies of chemosensory receptors in mammals and

Drosophila, as well as other genes with important regulatory and

physiological functions, have suggested a possible correlation

between functional requirements and the variations of gene

numbers [52,71,72]. Genes with conserved roles tend to have

relatively stable copy numbers while those with diversified

functions have higher rates of birth-and-death, although the

degrees of copy number changes are somewhat random. Our

results suggest that this pattern could also hold true for the

evolution of the hymenopteran chemosensory receptor genes. For

example, as an obligatory co-receptor for all other Ors [29], Orco is

the most conserved insect Or gene and also the only one that has

maintained unambiguous orthology in all insects studied to date,

including ants [69]. Similarly, orthologs of most ‘‘antennal IRs’’

Figure 7. Expression levels of Gr and Ir genes. (A) The GR family. (B) The IR family. Short lines indicate median expression levels for each gene
set. In both panels, genes expressed below the medians of their respective transcriptomes were labeled by grey.
doi:10.1371/journal.pgen.1002930.g007
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[26] have also maintained strict single-copy in Hymenoptera. It

has been proposed that these conserved ‘‘antennal IRs’’ represent

the earliest insect chemosensory receptors and perform functions

important for all insects [26]. Therefore, we suggest that the

chemosensory receptor genes that have constant copy numbers in

ants (e.g. the 35 single-copy tuning Ors) are likely to carry out

important functions common for all ants.

On the other hand, prevalent rapid expansions in chemosensory

receptor gene families could allow for diversification in ligand

specificity/sensitivity among duplicated receptor genes. Such

functional divergences would offer tremendous opportunities for

organisms to explore different chemical niches, thus facilitating the

adaption to new environments and/or the evolution of novel life

styles such as sociality. In all three gene families, we found either

retention of the complete ancestral repertoire (according to the

ML method) or dramatic increases in gene numbers (according to

the parsimony method) in the ancestor of ants (Figure 5), which

might have contributed to the success and subsequent diversifica-

tion of this group.

In addition, there are many cases of unbalanced expansions/

contractions among lineages in specific (sub-)families, suggesting

that the chemosensory receptor repertoire has been differentially

exploited among ants, which might shed light on the evolution of

different lifestyles of ants. For example, our results indicate

expansions of Grs in C. floridanus, L. humile, and P. barbatus, but not

H. saltator, which are likely to reflect differences in their feeding

behaviors. In this view, scavengers like C. floridanus might require a

highly expanded repertoire of taste receptors to discriminate

nutritious food sources from spoiled, contaminated, or poisoned

substrates. In contrast, H. saltator workers likely rely more on visual

cues to track down prey, as suggested by their large eyes and

expanded number of ommatidia [73]. Furthermore, Grs which act

as contact chemoreceptors would be far less useful for identifying

and capturing prey. In fact, ponerine ants in general rarely use

liquid food sources, since they normally lack the ability to

exchange liquids stored in their crop [74] which further reduces

the potential benefit of a large Gr repertoire.

Another intriguing possibility is that Grs are involved in the

contact chemosensation of species-specific, nonvolatile CHCs (e.g.

queen pheromone, nestmate recognition signals, etc.), and that C.

floridanus has more Grs precisely because they utilize a greater

number and variety of pheromones to support their more rigid

and complex social lifestyle. Presumably, these Grs would be in

addition to the large number of worker enhanced Ors that are

likely to be involved in the same process. Furthermore, C. floridanus

has expansions in multiple GR subfamilies, including 5 homologs

of the DmGr43a/AmGr3 gene, which has been recently shown to be

a fructose receptor [75]. Taken together, our results indicate a

correlation between the expanded GR family and the more

complex chemical ecology of C. floridanus.

Diversified expression of chemosensory receptor gene
The antenna is perhaps the most important chemosensory

organ for ants, where a variety of ant species have been observed

to closely inspect their environment and each other by touching

their antennae in a process known as antennation [2]. This makes

it likely that most of the behaviorally important chemosensory

neurons (and their corresponding chemosensory receptors) are

located in this organ. Our comparative analysis of antennal

transcriptomes of workers and males in both C. floridanus and H.

saltator reveal differential expressions of chemosensory receptor

genes both within and between species, providing important clues

on their functional divergence.

One major pattern revealed by our results is the substantial

sexual dimorphism in chemosensory receptor gene expression in

ants. For both C. floridanus and H. saltator, almost all Ors were

expressed in workers, but only one third were expressed in male.

Similarly, workers consistently had more expressed Grs and Irs

than males. In contrast, expression of chemosensory receptor

genes was highly similar between major and minor workers in C.

floridanus. Previous studies have shown that the antennal lobes of

males from both C. floridanus and H. saltator lack a large subset of

glomeruli relative to workers [76,77,78], which may explain the

low number of chemosensory receptor genes expressed in males.

Given that the number of glomeruli in insects generally correlates

with the number of functional odorant receptors [18,65], it is likely

that most of the Ors that are only expressed in C. floridanus and H.

saltator workers project to these female-specific glomeruli. Further-

more, it has been shown in another Camponotus species (Camponotus

japanicus) that females exclusively possess the olfactory sensilla

necessary to detect non-nestmate CHCs, [79,80]. It is therefore

likely that the CHCs receptors are encoded by some of the worker-

specific Ors in C. floridanus. In particular, the 9-exon subfamily

represents the largest expansion of Ors in all ants and it harbors

close to 100 worker-specific Ors in both C. floridanus and H. saltator.

These results strongly support previous hypothesis that members

of the 9-exon subfamily are likely candidates for ant CHCs

receptors [47,48]. These Ors are potentially involved in detecting

CHCs involved in worker-to-worker or worker-to-queen intraco-

lonial social communication.

Interestingly, we also noticed discrepancies between the overall

number of Ors and the number of glomeruli in the adults of these

two ant species. H. saltator workers and males both have far more

expressed Ors than the number of glomeruli in the adult antennal

lobe (approximately 78 in the adult male and 178 in the adult

worker [77]). The discrepancy in H. saltator could possibly be the

result of co-expression of multiple tuning Ors in the same ORN

and/or the projection of ORNs expressing different, but related

tuning Ors to the same glomerulus, which have both been observed

for a small number of Ors/ORNs in D. melanogaster [81,82,83,84].

However, given that the number of expressed Ors is about twice

the number of observed glomeruli, this would mean that each

glomerulus received input from, on average, two odorant

receptors. Although co-expression of tuning Ors has not been

observed to such a broad extent in any insect olfactory system

studied to date, it should be noted that many of the receptor pairs

that are co-expressed in Drosophila appear to be the result of

tandem duplication events [84]. Therefore, it is possible that the

extensive tandem duplication of H. saltator Or genes may also result

in the co-expression of closely related odorant receptors from the

same clusters. All of these are highly interesting hypotheses that

may be examined in future studies.

Figure 8. Identification of ligands for C. floridanus and H. saltator Ors. When paired with a previously characterized mosquito Or (AgOR10)
[103], both CfOrco (C. floridanus Orco) (A) and HsOrco (H.saltator Orco) (B) produced responses to VUAA1 (an agonist for Orco) [35] and benzaldehyde
(BA, an agonist for AgOR10) in Xenopus oocytes. These responses were not observed in water-injected control oocytes (C). The novel C. floridanus
tuning Or CfOr263 also shows a specific and dose-dependent response to 2,4,5-trimethylthiazole (TMT) (D), while the novel H. saltator tuning Or
HsOr55 shows a similar dose-dependent response to 4-methoxyphenylacetone (4 MPA) (F). Neither response is observed in water-injected oocytes
(E,G).
doi:10.1371/journal.pgen.1002930.g008
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In contrast to H. saltator, C. floridanus has approximately 80 fewer

Ors than the number of adult worker glomeruli (about 454 [76]). In

this instance it is possible that many of those glomeruli receive

projections from Gr and Ir expressing ORNs, as there is

precedence for this in Drosophila [24,43] and the number of

predicted Grs and Irs would be enough to fill the gap. Moreover, it

could be that several Ors have been missed by the current analysis

due to incomplete genome assembly; some of the fragmented Or

gene models might represent genuine genes, and further genomic/

transcriptomic data would help address this possibility.

Although chemosensory receptor genes in general had higher

expression in workers, our studies have nevertheless identified a

single Or (CfOr267, in subfamily 9-exon) and a single Ir (CfIR8a) in

C. floridanus, as well as 4 Ors (HsOr32, HsOr35, and HsOr37, in

subfamily L; and HsOr224, in subfamily E) and 2 Irs (HsIR8a and

HsIR75u.2) in H. saltator that were significantly male-enriched. The

male-enrichment of a receptor gene could be due to elevated

expression of the gene in ORNs of males relative to workers, and/

or increased number of ORNs expressing the gene in males. No

matter which of the possibilities is indeed the case, our results

indicate higher overall abundances of these chemosensory receptor

genes in male antennae. These genes are viable candidates for

receptors that are specifically tuned for male-specific social cues,

including queen pheromones. In fact, at least one male-specific

honeybee odorant receptor that responds to a queen-specific

pheromone has already been revealed through microarray analysis

and subsequent functional characterization in Xenopus oocytes

[85]. It would not be surprising to see that similar results will be

found with the male-enriched ant Ors.

In insects, the co-receptors IR8a and IR25a are the two most

conserved Irs [26]. Although a systematic profiling of sexual

dimorphic Ir expression is still lacking, a previous study has shown

that the Anopheles gambiae orthologs of both IR8a and IR25a have

higher expression in female than male [49]. Interestingly, IR8a was

the most male-enriched Ir in both C. floridanus and H. saltator.

While IR25a also displayed higher expression in C. floridanus male,

it was not expressed in the male of H. saltator. These results could

possibly indicate a functional divergence of IR8a and IR25a

between Diptera and Hymenoptera. In addition, the high

expression of IR25a in males of C. floridanus, but not H. saltator,

suggests that IR25a-mediated signaling might have contributed to

the more expanded roles for males within the colony of the former

species. It may be that C. floridanus males are more involved in

intracolonial interactions than H. saltator males, since males from

other Camponotus species are known to participate in food exchange

in the colony [86], which has not observed in H. saltator males.

We have also found diversified expression of closely related Ors

within and between species. For example, in the basal clades of the

9-exon OR subfamily, closely related C. floridanus and H. saltator Ors

showed opposite sexual dimorphism in their expression (Figure 6B).

Although the well-supported monophyletic clade within the 9-exon

OR subfamily mostly consists of worker-enriched genes, it also

harbors a few genes that are highly enriched in male (Figure 6C).

Thus, while our expression results are generally (and strongly)

consistent with the idea that members of the 9-exon OR subfamily

are involved in the detection of CHCs by workers [47], a subset of

these receptors have apparently been adapted for use in males,

possibly for detecting queen mating pheromones.

Taken together, these results indicate that ant Or genes have

experienced not only extensive gain-and-loss, but also rapid

changes in their expression, once again highlighting the highly

dynamic nature of chemosensory receptor gene evolution. Our

phylogenetic and transcriptomic analyses, in combination, have

identified ant chemosensory receptor genes that exhibit evolution-

ary and expression patterns indicative of species/sex-specific

functions. Ultimately, deorphanization of these receptors will

greatly facilitate our understanding of the chemical ecology of

social lifestyle in ants.

Heterologous characterization of differentially expressed
C. floridanus Ors

In our heterologous studies of ant tuning Ors, we have identified

chemical agonists for a single receptor from each of the two species

analyzed. These data provide conclusive validations for our

bioinformatic-based annotations. Although a honeybee odorant

receptor has been previously shown to respond to the queen

substance 9-oxo-2-decenoic acid [85], we believe that this

represents the first published report of ligand activators for

odorant receptors from ants.

In these studies, HsOr55 from H. saltator, display significant

responses to 4-methoxyphenylacetone, a naturally occurring

odorant found in anise essential oil [68]. Since anise essential oil

has been shown to have a repellent and/or insecticidal effect on at

least some species of insects [87,88], 4-methoxyphenylacetone

might represent a general insect repellent, with HsOr55 acting as

the detector for this repellent in H. saltator. Whatever HsOr55’s

role may be, it is likely to be a very general one, since HsOr55

transcripts do not appear to be differentially expressed between

workers and males.

The other odorant receptor characterized in this study,

CfOr263 from C. floridanus, displayed sensitivity to 2,4,5-trimethy-

lethiazole, a naturally occurring odorant found in cooked beef and

pork [67] that has been previously shown to induce strong

responses in the CpC neuron of the maxillary palp in the mosquito

Anopheles gambiae [44]. While the relevance of this chemical to C.

floridanus remains unclear, the fact that CfOr263 transcripts are

enriched in workers relative to males suggests that this odorant

may be an important volatile semiochemical for C. floridanus

workers. Regardless, the successful identification of odors that

activate CfOr263 and HsOr55 strongly validates the role of ant

Ors as chemosensory receptors. Furthermore, the large differential

expression of CfOr263 between workers and males indicates that it

is detecting a sex- specific signal that is relevant to workers but not

to males, and testing a broader panel of odorants in the future will

provide a better understanding of what that signal might be.

Conclusions
We have revealed a greatly expanded repertoire of chemosen-

sory receptor genes for a pair of divergent ant species, including

about 400 Ors and an order of magnitude smaller number of Grs

and Irs. Phylogenetic analysis of these newly annotated genes

indicates that there are likely to be vast differences in the

importance of particular chemoreceptor families and subfamilies

between the four ant species examined, which is likely to reflect the

variety of ecological and social demands experienced the members

of each species. These analyses also reveal high rates of gene birth-

and-death evolution among the olfactory and gustatory receptor

genes, suggesting that some factor (such as changes in the complex

CHC profiles that control ant social behavior) is driving rapid

evolution in their chemical response profiles. The large repertoire

of ant chemosensory genes might be either due to preferential

retention of ancestral genes or rapid expansions in the ant ancestor

and during later stages of ant evolution. To further complement

these phylogenetic results, we have generated and analyzed

antennal-specific RNAseq expression data to identify ,40 C.

floridanus and ,120 H. saltator chemosensory receptors that exhibit

significant sexual dimorphism in expression. This expression data

has, in turn, informed studies towards the identification of odorant
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ligands for socially relevant receptors, a process that we have

already successfully accomplished in a heterologous system for one

of the differentially expressed C. floridanus Ors. Taken together, our

evolutionary analysis, transcriptome profiling, and heterologous

characterization provide new insights into the roles of the

chemosensory receptors in inter-sex behavioral and social differ-

ences of ants.

Materials and Methods

Gene annotations
The assemblies of C. floridanus (version 3.5) and H. saltator

(version 3.5) were downloaded from the Hymenoptera Genome

Database [89]. Protein sequences of reported chemosensory gene

were also collected from Apis mellifera, Acyrthosiphon pisum, Drosophila

melanogaster, Nasonia vitripennis, L. humile, and P. barbatus

[15,26,28,47,48,50,54]. An in-house bioinformatics pipeline was

developed to identify candidate chemosensory genes in C. floridanus

and H. saltator. First, all collected chemosensory gene sequences

were searched against the two ant genomes using TBLASTN [90]

with an e-value cutoff of 1e-5. Resulting High-scoring Segment

Pairs (HSPs) were sorted by their blast bit-scores, and an average

bit-score of the top 75% HSPs were calculated. Any HSPs with a

bit-score less than 25% of the average was discarded. Chains of

HSPs were than created from retained HSPs. Two HSPs were

chained together if the following criteria were met: 1) they are

derived from the same query; 2) they are located within 3 kb on

the same strand of a scaffold/contig; and 3) the corresponding

query region of the upstream HSPs must also be N-terminal to

that of the downstream HSPs. The third criterion was applied to

avoid artificial concatenation of neighboring chemosensory genes.

Genomic regions covered by HSPs chains were considered

putative chemosensory gene coding regions. For each putative

gene, we then selected the query corresponding to the highest

scoring HSPs at that region as reference sequence for homology-

based gene prediction using GeneWise (version 2.2.0) [91]. All

predictions were sorted by ORF length and the lowest 25% was

filtered. This pipeline was iterated by adding results of previous

run to input until no additional genes were found.

Multiple sequence alignments (MSAs) of predicted OR/GR/

IRs were constructed using MUSCLE (version 3.8) [92] and

manually inspected. Attempts to improve annotations were made

whenever an obvious problem was identified (e.g. missing exon,

incorrect exon-exon junction). In addition, in the OR and GR

families, we observed many fragmented gene models, likely due to

pseudogenization and incomplete genome assembly. For the

convenience of subsequent analyses, a minimum size cutoff of

300 amino acids was used for the ORs and GRs. For IRs, we

screened all predicted protein sequences with InterProScan (V4.8)

[93] and filtered the ones without characteristic domains of IR

(PF10613 and PF00060) [26].

Phylogenetic analysis
We included in our phylogenetic analysis chemosensory

receptor genes in six hymenopteran species, including A. mellifera,

C. floridanus, H. saltator, N. vitripennis, L. humile, and P. barbatus. For

each of the OR/GR/IR families, all family members were firstly

aligned at once using MUSCLE (version 3.8) and a preliminary

phylogenetic tree was built using RAxML (version 7.2.8) [94].

Sequences were then divided into groups corresponding to highly

supported clades in the preliminary phylogeny. Groups were

aligned individually using PROBALIGN (version 1.4) [95] and

then combined together using the profile alignment function of

MUSCLE. The complete alignment were further manually

inspected and adjusted using GeneDoc (version 2.6) [96]. In

addition, poorly aligned regions in the alignment were removed

using trimAl (version 1.4) [97]. The final maximum-likelihood tree

was constructed using RAxML with Le-Gascuel (LG) substitution

model [98] and GAMMA correction for rate variation among

sites. Reliability of tree topology was evaluated by 100 bootstrap

replicates. To estimate the number of gene gain and loss events,

we used a maximum-likelihood based approach implemented in

CAFÉ (version 2.2) [62] with default settings. As an alternative

approach, we also used the parsimony based ‘‘modified reconcil-

iation method’’ [99]; we first collapsed branches with bootstrap

support lower than 70 in phylogenies of OR/GR/IR families and

then reconciled condensed trees with known organismal relation-

ships using Notung (version 2.6) [63].

Antenna collection, RNA extraction, and Illumina
sequencing

Samples originated from C. floridanus colonies that had been

founded in the Liebig lab from queens captured in southern Florida

between 2002 and 2009 and from H. saltator colonies collected in

Karnataka, India between 1995 and 1999. Antennae were collected

from each of five groups of adult ants: H. saltator workers and males

and C. floridanus major workers, minor workers, and males. Whole

ants were flash-frozen in liquid nitrogen and kept on dry ice as 100

antennae from each group were removed with forceps. Antennae

were placed directly into RNAlater ICE (Ambion) that had been

pre-chilled on dry ice in a conical, ground-glass, tissue homogenizer.

RNAlater ICE was replaced with 1 ml Trizol (Invitrogen), in which

antennae were homogenized. Total RNA was isolated following

Trizol manufacturer instructions; briefly, after addition of 200 ml of

a chloroform:isoamylalcohol mixture (24:1), each sample was mixed

vigorously and the RNA-containing aqueous layer was isolated with

centrifugation. RNA was further purified and DNAse-treated with

the RNeasy Miniprep kit (Qiagen). After ethanol-precipitation, the

RNA pellet was resuspended in 30 ml nuclease-free water. Male

samples were sequenced using Illumina HiSeq2000 at the

NYULMC Genome Technology Center, generating ,33 million

50 bp single-end reads for C. floridanus male and ,164 million 51 bp

single-end reads for H. saltator male. All worker samples were

sequenced at Hudson Alpha, generating more than 20 million 50 bp

paired-end reads for each sample (sum of two technical replicates).

Analysis of ant antennal transcriptome
Reads of C. floridanus male sample were trimmed to 34 bp (8 bp

trimmed from both ends) to remove low-quality positions. In

addition, for all worker datasets, we treated each paired-end read

as two single-end reads. Therefore, all datasets in our subsequent

analyses consist of only single-end reads. Alternative strategies for

data processing led to highly similar estimations of gene expression

values (Table S5). For each dataset, reads were mapped to the

corresponding ant genome using TopHat (version 1.3.3) [100]

with default setting. Gene annotations for C. floridanus (version 3.5)

and H. saltator (version 3.5) were downloaded from the Hyme-

noptera Genome Database and used in combination with our

annotation of chemosensory genes to guide the reads mapping.

Gene expression levels (in FPKM values) and differentially

expressed genes were determined using Cuffdiff v1.3.0 [101] with

frag-bias-correct, multi-read-correct, and upper-quartile-norm

options turned on.

Heterologous analysis of ant odorant receptors
Predicted Or coding sequences were amplified, by PCR, from H.

saltator and C. floridanus worker antennal cDNA samples obtained
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from colonies established at Arizona State University (Tempe,

AZ). The PCR-amplified sequences were then TOPO cloned into

the Gateway Entry vector pENTR/D-TOPO (Life Technologies),

followed by an additional cloning step into a destination vector

derived from pSP64T. To obtain cRNA for each Or, the pSP64T

vector containing the appropriate coding sequence was linearized

by restriction digest and used as a template for cRNA synthesis

using the mMessage mMachine Sp6 Kit (Ambion). Heterologous

expression of ORs was accomplished as described previously [66].

Briefly, mature oocytes were surgically extracted from Xenopus

leavis adult females, treated with 2 mg/mL collagenase II in 16
Ringer’s solution (96 mM NaCl, 2 mM KCl, 5 mM MgCl2, and

5 mM Hepes, pH 7.6) for 30–45 minutes at room temperature,

and then injected with 27.6 nL of a 1:1 mixture (by mass) of a

given tuning Or in combination with the appropriate Orco ortholog

(either HsOrco or CfOrco). After injection, oocytes were stored in

Incubation Medium (10% dialyzed horse serum in 16 Ringer’s

solution) at 18C for 3–7 days before testing. Responses to odorants

were measured by recording whole-cell currents in Clampex 10.2

(Molecular Devices) using a two-electrode voltage-clamp setup

(OC-725C, Warner Instruments) maintained at a 280 mV

holding potential. Odorants were first dissolved in DMSO, and

then further diluted into Ringer’s solution before being introduced

to the oocyte recording chamber using a perfusion system. For the

hydrocarbons that were tested, 0.01% Triton X-100 (Sigma) was

also added to the Ringer’s solution to aid in dissolving the odorant.

The following odorant receptors were tested with the odorants

listed in Table S4: CfOr183, CfOr215, CfOr263, HsOr19,

HsOr55, HsOr132, HsOr170, HsOr175, HsOr212, HsOr213,

HsOr234, HsOr239, HsOr279, HsOr287.

Chemicals
Odorant chemicals were purchased from commercial sources at

the highest purity available. Henkel 100, a mixture of 100 different

volatile chemicals, was obtained from Henkel (Düsseldorf,

Germany), and the C7–C40 saturated alkane mixture was

purchased from Supelco (Bellefonte, PA, USA).

Supporting Information

Dataset S1 Details of C. floridanus and H. saltator chemosensory

receptor genes annotated in this study. The genome location and

predicted protein and transcript sequences are provided for each

annotated gene.

(XLSX)

Dataset S2 Phylogenetic relationships of Hymenoptera Or genes

shown in newick format. Bootstrap values are shown for all nodes.

See Figure 2A and Figure S2 for graphical presentation of the

same phylogeny.

(TXT)

Dataset S3 Phylogenetic relationships of Hymenoptera Gr genes

shown in newick format. Bootstrap values are shown for all nodes.

See Figure 3 and Figure S6 for graphical presentation of the same

phylogeny.

(TXT)

Dataset S4 Phylogenetic relationships of Hymenoptera Ir genes

shown in newick format. Bootstrap values are shown for all nodes.

See Figure 4 and Figure S8 for graphical presentation of the same

phylogeny.

(TXT)

Dataset S5 Complete results of antennal transcriptome com-

parisons for all chemosensory receptor genes. Four pairwise

comparisons are presented, including major worker vs. minor

worker (C. floridanus), major worker vs. male (C. floridanus), minor

worker vs. male (C. floridanus), and worker vs. male (H. saltator).

(XLSX)

Figure S1 C. floridanus and H. saltator OR genes are mostly

distributed in tandemly arrayed gene clusters. (A) C. floridanus OR

genes. (B) H. saltator OR genes.

(EPS)

Figure S2 Phylogenetic relationships of Hymenoptera Or genes.

The same tree as in Figure 2A is shown with gene names. Only

bootstrap values $50 are shown. Supported subfamilies are

indicated by brackets.

(EPS)

Figure S3 Phylogenetic relationships of Or genes in representative

insects. A maximum-likelihood tree of Or genes from D. melanogaster,

T. castaneum, and six hymenopteran species. The topology is

estimated by using RAxML with Le-Gascuel (LG) model.

Reliability of internal nodes was evaluated by 100 bootstrap

replicates. Only bootstrap values $50 are shown. Subfamilies that

are delineated based on hymenoptera OR phylogeny are indicated

by brackets. All D. melanogaster and T. castaneum genes are highlighted

in blue. Confidently resolved relationships among hymenopteran

and non-hymenopteran Or genes are indicated by red.

(EPS)

Figure S4 Phylogeny of selected OR clades exhibiting distinct

modes of gene birth-and-death: (A) constant single-copy in all ants;

(B) gene gain in P. barbatus only; (C) gene loss in H. saltator, but

multiple gene gains in other ants; and (D) lineage-specific

expansions in all ants.

(EPS)

Figure S5 Tandemly arrayed ant OR genes were generated by

duplications at multiple stages of ant evolution. Evolutionary

relationships and genomic arrangements of selected C. floridanus and

H. saltator OR genes were shown. M, N, O, and P indicate four well

supported OR subfamilies, each likely representing one OR gene in

the ancestor of Hymenoptera. C. floridanus OR genes belonging to the

cluster on scaffold538 were labeled by red. H. saltator OR genes

belonging to the cluster on scaffold105 were labeled by blue.

(EPS)

Figure S6 Phylogenetic relationships of Hymenoptera Gr genes.

The same tree as in Figure 3 is shown with gene names. Only

bootstrap values $50 are shown. Supported subfamilies are

indicated by brackets. Subfamilies showing interesting evolution-

ary patterns are named after the orthologs in N. vitripennis and A.

mellifera. The other subfamilies are named as A–H.

(EPS)

Figure S7 Phylogenetic relationships of Gr genes in representa-

tive insects. A maximum-likelihood tree of Gr genes from D.

melanogaster, T. castaneum, and six hymenopteran species. The

topology is estimated by using RAxML with Le-Gascuel (LG)

model. Reliability of internal nodes was evaluated by 100

bootstrap replicates. Only bootstrap values $50 are shown.

Subfamilies that are delineated based on hymenoptera GR

phylogeny are indicated by brackets. Subfamilies showing

interesting evolutionary patterns are named after the orthologs

in N. vitripennis and A. mellifera. The other subfamilies are named as

A–H. All D. melanogaster and T. castaneum genes are highlighted in

blue. Confidently resolved relationships among hymenopteran and

non-hymenopteran Gr genes are indicated by red. The clade of

Grs encoding carbon dioxide receptor is indicated by blue.

(EPS)
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Figure S8 Phylogenetic relationships of Hymenoptera Ir genes.

The same tree as in Figure 4 is shown with gene names. Only

bootstrap values $50 are shown. Supported subfamilies are

indicated by brackets, and named after the orthologs in L. humile

and P. barbatus.

(EPS)

Figure S9 Phylogenetic relationships of Ir genes in representa-

tive insects. A maximum-likelihood tree of Ir genes from D.

melanogaster, T. castaneum, and six hymenopteran species. The

topology is estimated by using RAxML with Le-Gascuel (LG)

model. Reliability of internal nodes was evaluated by 100

bootstrap replicates. Only bootstrap values $50 are shown.

Subfamilies that are delineated based on hymenoptera IR

phylogeny are indicated by brackets, and named after the

orthologs in L. humile and P. barbatus. All D. melanogaster and T.

castaneum genes are highlighted in blue. Confidently resolved

relationships among hymenopteran and non-hymenopteran Ir

genes are indicated by red.

(EPS)

Figure S10 Pairwise comparisons of whole transcriptome

between castes for C. floridanus and H. saltator. Chemosensory

receptor genes were highlighted in red.

(EPS)

Table S1 Sequence divergence of chemosensory receptor genes.

(DOCX)

Table S2 Summary of ant antennal transcriptome data sets and

mapping results.

(DOCX)

Table S3 Expression patterns of (co-)orthologous Or genes in C.

floridanus and H. saltator.

(XLSX)

Table S4 List of the 73 odors screened in this study.

(XLS)

Table S5 Alternative strategies for bioinformatic processing of

ant transcriptomes do not significantly affect read mapping.

(DOCX)
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