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Abstract

Many studies link the compositions of microbial communities to their environments, but the energetics of organism-specific
biomass synthesis as a function of geochemical variables have rarely been assessed. We describe a thermodynamic model
that integrates geochemical and metagenomic data for biofilms sampled at five sites along a thermal and chemical gradient
in the outflow channel of the hot spring known as ‘‘Bison Pool’’ in Yellowstone National Park. The relative abundances of
major phyla in individual communities sampled along the outflow channel are modeled by computing metastable
equilibrium among model proteins with amino acid compositions derived from metagenomic sequences. Geochemical
conditions are represented by temperature and activities of basis species, including pH and oxidation-reduction potential
quantified as the activity of dissolved hydrogen. By adjusting the activity of hydrogen, the model can be tuned to closely
approximate the relative abundances of the phyla observed in the community profiles generated from BLAST assignments.
The findings reveal an inverse relationship between the energy demand to form the proteins at equal thermodynamic
activities and the abundance of phyla in the community. The distance from metastable equilibrium of the communities,
assessed using an equation derived from energetic considerations that is also consistent with the information-theoretic
entropy change, decreases along the outflow channel. Specific divergences from metastable equilibrium, such as an
underprediction of the relative abundances of phototrophic organisms at lower temperatures, can be explained by
considering additional sources of energy and/or differences in growth efficiency. Although the metabolisms used by many
members of these communities are driven by chemical disequilibria, the results support the possibility that higher-level
patterns of chemotrophic microbial ecosystems are shaped by metastable equilibrium states that depend on both the
composition of biomass and the environmental conditions.
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Introduction

The structures of microbial communities emerge from a

combination of environmental, ecological, and evolutionary

interactions. Gradients of temperature are apparent in hot springs

in Yellowstone National Park, and chemical properties such as pH,

oxidation-reduction potential, and concentrations of dissolved

sulfide and inorganic carbon also show great variation among sites,

providing the foundation for delineating different possible

chemotrophic metabolisms that may take advantage of the

disequilibrium among inorganic chemical species [1]. In the same

places where the chemical changes are apparent, there are

gradations between major taxonomic groups. An example is the

transition between chemotrophy and the onset of phototrophic

metabolisms at lower temperatures [2–5]. This transition is

sometimes referred to as the ‘‘photosynthetic fringe’’ [2] and is

regarded as an ecotone [4], i.e. a transition between ecosystems

with different metabolic and taxonomic characteristics.

The relative contributions of temperature, pH and sulfide to the

limits of photosynthesis in Yellowstone have been quantified using

statistical model selection techniques and generalized additive

models [6,7]. Larger-scale geochemical variation across hot

springs in Yellowstone can also be correlated with phylogenetic

trends determined from 16S RNA or metagenomic sequencing,

for example using ordination methods such as principal compo-

nents analysis [8].

Considering microbial communities in general, ‘‘bioclimatic

models’’ have been proposed to assess the correlations between

relative abundances and environmental variables [9]. Of these,

artificial neural network models are noteworthy because they

include terms describing interactions among taxonomic groups as

well as with the environment [9,10]. If the dynamics of community

assembly (i.e., birth, death and immigration) are expressed as

stochastic processes, another possibility is to use neutral commu-

nity assembly to predict species abundance distributions [11,12].

Neutral models invoke a mechanism for assembling microbial

communities in which the probability for replacement of a cell is

independent of species identity; these dynamics permit coexistence

of species with varying competitive advantages [11].

Commonly, ecological models that predict relative abundances

are based on mechanisms inherent in community assembly. A

chemical equilibrium model, in contrast, describes only a single

state of the system (an energy minimum), yet generates predictions

linking the chemical conditions and the relative abundances of
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(bio)chemical species. Precedents exist for using energy minimiza-

tion to describe certain aspects of biological systems; for example,

analogies have been drawn between processes leading to increased

fitness and energy minimization in chemical and physical systems

[13]. Arguments for thermal equilibrium (maximum entropy) have

been put forward to explain sequence diversity of proteins [14],

but these were based on information-theoretic, not chemical,

considerations. At the level of cells, equilibrium models to describe

molecular binding lead to quantitative predictions and falsifiable

hypotheses; failures of data to fit simple models provide evidence

for energy coupling between processes [15]. The wide applicability

of equilibrium models for binding was proposed to depend on the

separation of time scales between the fast binding processes, taken

to approach equilibrium, and the non-equilibrium changes in the

cell such as concentrations of ions or gene transcripts [15]. A

separation of time scales is also inherent in the present study, in

that the equilibrium models investigated relate to long time scales

(e.g. differences in the biomolecular compositions of organisms,

which arise through evolution) compared to metabolism and other

processes in single cells that proceed in non-equilibrium states.

Investigating the applicability of an equilibrium framework

requires building quantitative models based on thermodynamic

and compositional data; these challenges have made it so that

possible implications for using predictions from equilibrium

models to better understand environmental influences on micro-

bial communities remain relatively unexplored. A metastable

equilibrium model can be used to generate predictions connected

with the hypothesis that complex interactions in ecology and

evolution have a tendency to result in lowering of Gibbs energy of

the ecosystem. A quantitative description of the local energy

minimum leads to comparisons with data that may not fit the

model and therefore can help to identify additional energetic

contributions. These comparisons are attainable by first construct-

ing a metastable equilibrium model that integrates parameters of

the geochemical environment, biomolecular composition and

relative abundances of coexisting microbial taxa. In this study,

taxonomic classification at the phylum level is chosen in order to

provide an overview of the entire community; but in the future it

may be possible to develop comparisons at other taxonomic levels.

Here, we propose an application of a metastable equilibrium

model for the relative abundances of microbial phyla (MEM-

RAMP). A BLAST-based taxonomic assignment is used to classify

the metagenomic sequences, and from the counts of assigned

sequences to estimate the relative abundances of the phyla,

referred to below as the observed abundances. The amino acid

composition of a single model protein for each of the major phyla

is constructed by binning metagenomic sequences using the

BLAST assignments. The inputs to the model are then the

geochemical conditions, including temperature, pH and oxidation-

reduction potential, and amino acid compositions of the model

proteins. The algorithms used in the model are based on group

additivity for estimating the standard thermodynamic properties of

proteins [16], and a metastable equilibrium calculation that can be

derived from the Boltzmann distribution, as described in more

detail below. The outputs of the model are the relative abundances

of the model proteins, thereby constituting independent predic-

tions of the relative abundances of the microbial taxa, referred to

below as the metastable equilibrium or calculated abundances.

The model is a metastable equilibrium model because only the

relative abundances of model proteins are calculated based on

equalization of chemical affinities (see Methods for details);

absolute abundances of proteins in equilibrium with other

biomolecules or inorganic species are not considered. The

candidate proteins used to model a community at a specific

location are drawn from the metagenomic sequences and major

phyla observed to be present at that location, not from the entirety

of sequences and organisms in the hot spring. The outputs of the

model can be compared with observed abundance distributions in

order to optimize the geochemical parameters in the model. All of

the geochemical parameters in the model are measurable and

therefore the optimized model represents an integrative set of

predictions based on observations from both geochemistry and

microbial ecology, which is, nevertheless, made independently of

any statement about mechanism or interaction among species. By

comparing the model with observations, communities can be

shown to have differing degrees of equilibration, and occurrences

of taxa whose relative abundances diverge from metastable

equilibrium lead to identification of additional inputs or outputs

of energy.

Results and Discussion

The model system studied here is the hot spring known as

‘‘Bison Pool’’ in Yellowstone National Park. ‘‘Bison Pool’’ is an

unofficial name for the ‘‘fourth unnamed spring in Sentinel

Meadow’’ identified in a study of the geochemical energy supply to

hydrothermal ecosystems [1]. Over a distance of ,20 m, the

outflow channel of this hot spring is characterized by significant

cooling (from boiling to less than 60uC) and increases in pH and

oxidation-reduction (redox) potential. Chemosynthetic microbes,

in some cases forming streamer biofilm communities [4], are

common near the source of the hot spring, while mixed

photosynthetic-chemosynthetic communities become prevalent at

lower temperature. The gradients of temperature, pH and redox

conditions along the outflow channel of the hot spring coincide

with changes in composition of microbial communities that are

apparent from metagenomic sequencing. Recent publications

[4,17,18] provide detailed descriptions of the geochemistry and

microbial communities of Bison Pool.

In the calculations described below, we first obtain a model

protein for each phylum with an amino acid composition derived

from metagenomic sequences. A stoichiometric analysis shows that

the chemical compositions of these model proteins increase in

average oxidation state of carbon down the outflow channel, but

there is also a decrease in the range of oxidation states represented.

Second, the relative abundances of the model proteins in

metastable equilibrium are calculated as functions of a redox

variable, log aH2 aqð Þ , but temperature and chemical activities of

basis species including pH are taken from field measurements. A

major result is that the model is conformable to the observed

relative abundances of phyla derived from a BLAST classification.

Finally, the values of log aH2 aqð Þ (the thermodynamic activity of

dissolved H2) are optimized in order to minimize the energetic

difference between the calculated and observed community

profiles. The optimal values of activity of hydrogen decrease with

distance down the outflow channel, in parallel with field-based

redox measurements and with a previous model for the relative

stabilities of proteins among sites [19]. The deviations between the

equilibrium and observed abundances may be explained by

energetic contributions from specific metabolisms. For example,

low computed relative abundances of Chloroflexi and Cyanobac-

teria are consistent with additional energy input by phototrophy.

The comparisons reveal an apparent minimization of Gibbs

energy that has proceeded to a greater extent at the lower

temperatures of the hot-spring ecosystem.

Metastable Equilibrium Abundances of Phyla
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Metagenomic Community Profile and Model Proteins
The metagenomic sequences were derived from biofilm samples

at five sites along the outflow channel of Bison Pool [4,17–19],

representing two high-temperature chemotrophic communities

(sites 1 and 2), a transition zone or ecotone (site 3) [4], and two

lower-temperature phototrophic-chemotrophic communities (sites

4 and 5). The metagenomically derived protein sequences were

classified using BLAST [20] against the NCBI RefSeq database

[21], release 57; the output files are provided in Dataset S1. The

major phyla are taken to be those that constitute at least 3% of the

BLAST hits at a given location (see Methods for details). The

number of inferred protein sequences at each of the five sampling

sites in Bison Pool is listed in Table 1, and the BLAST-generated

community profile is summarized in Tables 2 and 3.

In the BLAST-generated taxonomic profile, the only major

phylum present at all sites is Proteobacteria. Enterobacter cloacae,

commonly occurring in the human gut flora, is identified as the

most highly-represented species in this phylum. There is a

possibility that DNA from this organism was introduced at some

point, either from the meadow surrounding the hot spring, or in

the sample processing or sequencing pipeline, but also the

possibility of artifacts in the BLAST assignments as a consequence

of the relatively limited representation of hot-spring organisms in

the RefSeq database. It is the classification of these sequences as

coming from Proteobacteria, not the species-level assignment, that

is used in the model.

The number of major phyla changes from 5 at site 1 to 7 at all

other sites. An increase in number of phyla along the outflow

channel is consistent with a previous analysis based on classifica-

tion of metagenomic DNA sequences instead of proteins [18]. Also

in line with that study and with analysis of small subunit RNA

(16S) sequences [4], we find that the major bacterial group is

Aquificae at sites 1 and 2, with Deinococcus-Thermus becoming

most abundant at site 3. At sites 4 and 5 there is a greater

dominance of Chloroflexi and Cyanobacteria, respectively, and at

site 5 an abundance of Proteobacteria that exceeds that of

Cyanobacteria, which is consistent with previously reported

classifications [18]. The absence of Deinococcus-Thermus at site

4 in this analysis is consistent with the very low abundance found

in [18]. Other notable similarities to [18] include the high

proportion of Chloroflexi at site 3 that are classified as

Thermomicrobium roseum and a change in dominant representation

of Cyanobacteria from Synechococcus sp. strain B-prime to

Synechococcus sp. strain A between sites 4 and 5 (Table 3).

The protein BLAST community profile indicates that Firmi-

cutes are most abundant in the transition environment of site 3,

which is consistent with previous studies at Bison Pool [4,18].

Sequences classified as Acidobacteria at sites 4 and 5 belong

mostly to ‘‘Candidatus Chloracidobacterium thermophilum’’, with a

genome sequence published in 2012 [22]. The rapidly developing

nature of the reference genomic databases implies that at present

there are significant limitations of using BLAST analysis to classify

all the sequences in the metagenome. For classification at the

phylum level at Bison Pool, BLAST is sufficient, while for more

refined taxonomic assignments other binning approaches, such as

binning based on tetranucleotide frequencies [18], should be

considered.

The phylum distribution derived from BLAST was not

corrected for sampling effects. Using more statistically rigorous

markers such as single-copy protein coding genes [23], or 16S

RNA sequences with copy number corrections [24] would

improve the actual picture of the community. However, the

similarities of the BLAST-derived community profile to previous

studies suggests that it is suitable as a first-order estimate for the

relative abundances of the phyla that can be used for testing the

major questions posed in this study.

The BLAST profile also serves to identify sequences that are

combined to generate the amino acid compositions of the model

proteins. The quantity of each protein that is actually produced by

the microbial communities is unknown. Therefore, we derived

model protein compositions from an unweighted average of

metagenomic sequences. The amino acid compositions and

chemical formulas of the model proteins are listed in the files

bison_protein.csv and protein_table.csv, respectively, in Dataset

S2. Eventually, more robust metastable equilibrium models could

be constructed that take account of the total composition of

biomass (not only proteins) and Gibbs energies of cells. While there

is progress in that direction, the attempts to date have been based

on cellular compositions of common model organisms such as

Escherichia coli and Saccharomyces cerevisiae [25,26].

Average Oxidation State of Carbon in Model Proteins
The average oxidation state of carbon (�ZZC) is a stoichiometric

ratio that is useful for comparing the chemical compositions of

sequences. It can be used to quickly assess the impact of changing

environmental oxidation potential on the relative energy available

for the overall reactions to form the proteins from inorganic

constituents, although a thermodynamic assessment, described

below, is needed to quantify the energies with regard to all

environmental parameters, including temperature, oxidation

potential, pH and concentrations of other chemical species.

Average oxidation state of carbon can be calculated using [19]:

ZC~
Z{nHz2 nOznSð Þz3nN

nC

, ð1Þ

Table 1. Overview of BLAST results, field measurements of
temperature and pH, and model values of log aH2 aqð Þ .

log aH2 aqð Þ

Sitea Proteinsb
BLAST
hitsc

Major
phylad T, 6Ce pHe Eq. 2f optimumg

1 (N) 40360 32602 5 (28901) 93.3 7.350 24.00 23.38

2 (S) 50497 37333 7 (31786) 79.4 7.678 25.04 24.14

3 (R) 43250 31886 7 (26163) 67.5 7.933 25.94 25.66

4 (Q) 83790 66490 7 (58073) 65.3 7.995 26.10 27.47

5 (P) 74082 57344 7 (47744) 57.1 8.257 26.72 210.02

aThe number of the sampling site in the hot spring is given, together with the
original letter codes used in the field to identify the samples.
bThe number of inferred protein sequences in the metagenome (from JGI
annotations), which in general do not correspond to complete protein
sequences.
cThe number of hits using protein BLAST to the microbial proteins in the RefSeq
database version 57.
dNumbers of major phyla (i.e. those making up at least 3% of the total number
of BLAST hits in a given site) and, in parentheses, hits that are assigned to a
major phylum.
eField-based measurements in the hot spring [1,19].
fGradient model; calculated using Eq. 2 [19] and the values of temperature
shown in this table.
gCommunity model; these values minimize the difference in Gibbs energy
between assemblages having the metastable equilibrium and observed relative
abundances of phyla (Eq. 16).
doi:10.1371/journal.pone.0072395.t001

Metastable Equilibrium Abundances of Phyla
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where nC, nH, nN, nO and nS are the numbers of the indicated

subscripted elements in the chemical formula of a protein or other

chemical species, and Z is the net charge of the chemical species.

Note that protonation/deprotonation reactions have no net effect

on �ZZC because the addition or removal of a proton contributes

equally to Z and nH.

Along the length of the outflow channel of Bison Pool, there is a

general increase in oxidation state of carbon in the model proteins

(Fig. 1). The most reduced model proteins are those for Aquificae

Table 2. Summary of major phyla at each location in the hot spring.

Phyluma Sequences
Representative Species
(%)b Phyluma Sequences

Representative Species
(%)b

Site 1 (N) Site 4 (Q)

Aquificae 15878 1 (39.2) Chloroflexi 19149 13 (63.8)

Crenarchaeota 5712 2 (18.6) Cyanobacteria 15593 14 (58.4)

Proteobacteria 4462 3 (16.0) Proteobacteria 8135 3 (18.9)

Dein.-Thermus 1668 4 (75.5) Acidobacteria 5209 15 (88.3)

Firmicutes 1181 5 (3.2) Firmicutes 4474 16 (2.8)

Bacteroidetes 3036 10 (8.3)

Site 2 (S) Chlorobi 2477 17 (83)

Aquificae 9549 6 (38.6)

Crenarchaeota 7646 2 (14.6) Site 5 (P)

Proteobacteria 6195 3 (9.6) Chloroflexi 17557 13 (43.8)

Firmicutes 3872 7 (10.4) Proteobacteria 8385 3 (19.0)

Dein.-Thermus 1986 4 (70.1) Cyanobacteria 8158 12 (50.8)

Euryarchaeota 1301 8 (5.5) Firmicutes 5590 16 (3.3)

Chloroflexi 1237 9 (17.9) Acidobacteria 3500 15 (83.2)

Bacteroidetes 2373 10 (13.2)

Site 3 (R) Dein.-Thermus 2181 4 (38.2)

Dein.-Thermus 8493 4 (73.3)

Firmicutes 5406 7 (13.5)

Proteobacteria 3078 3 (5.2)

Aquificae 2935 6 (36.4)

Bacteroidetes 2624 10 (19.5)

Chloroflexi 2493 11 (40.4)

Cyanobacteria 1134 12 (5.6)

aThe names of the major phyla having sequences making up at least 3% of the total number of BLAST hits in any location.
bThe species with the greatest number of BLAST hits (percentage shown in parentheses) in each phylum. The numbered species are listed in Table 3.
doi:10.1371/journal.pone.0072395.t002

Table 3. Representative species having greatest number of BLAST hits for major phyla at different sites in the hot spring.

Number Name Number Name

1 Thermocrinis albus 10 Rhodothermus marinus

2 Pyrobaculum sp. 1860 11 Thermomicrobium roseum

3 Enterobacter cloacae 12 Synechococcus sp. JA-3-3Ab

4 Thermus aquaticus 13 Roseiflexus sp. RS-1

5 Carboxydothermus 14 Synechococcus sp. JA-2-3B’a(2-13)

hydrogenoformans 15 ‘‘Candidatus Chloracidobacterium

6 Hydrogenobacter thermophilus Thermophilum’’

7 Bacillus sp. m3-13 16 Thermincola potens

8 Ferroglobus placidus 17 Chloroherpeton thalassium

9 Anaerolinea thermophila

Numbers correspond to the species identifiers in Table 2.
doi:10.1371/journal.pone.0072395.t003

Metastable Equilibrium Abundances of Phyla

PLOS ONE | www.plosone.org 4 September 2013 | Volume 8 | Issue 9 | e72395



at sites 1 and 2, and the most oxidized model proteins are those for

Cyanobacteria, Chloroflexi and Acidobacteria at sites 3, 4 and 5.

The overall increase of the average oxidation state of carbon in

model proteins for phyla shown in Fig. 1 is similar to that for

model proteins representing shared functional annotations de-

scribed in our previous study [19]. However, unlike the mostly

sub-parallel increase of �ZZC exhibited by different groups of model

proteins representing shared functional annotations [19], model

proteins for phyla show a wide range of �ZZC at sites 1, 2 and 3 that

becomes much narrower at sites 4 and 5. This pattern indicates a

greater chemical variation among model proteins for phyla at the

higher temperatures.

Changes in chemical composition of hydrothermal fluids, in

addition to temperature, can have major influences on the energy

available to different microbial communities [1]. One possible

environmental contribution to the trends appearing in Fig. 1 is

that the input of oxygen to the ecosystem through mixing of the

hot-spring fluid with the atmosphere and with more oxygenated

groundwater, and perhaps also through diurnal production and

consumption of O2 by photosynthetic organisms, results in more

oxidizing conditions farther from the source of the hot spring. The

magnitude of the effect of increasing oxidation potential of the

fluid on the energy available for biomass synthesis is related to the

chemical composition (stoichiometry) of the biomass itself.

Increasing oxidation potential may provide more energy for the

growth of chemotrophs generally, through the greater disequilib-

rium established with initially reduced species in the fluid.

However, the chemical shift can be expected to have a relatively

less favorable impact on the chemotrophic growth of Aquificae

and other organisms that have relatively low-�ZZC (reduced)

biomass, compared to that of other organisms with more oxidized

biomass. Other explanations may be needed for the observation

that the source of the hot spring hosts phyla with a wide range of
�ZZC, while the farther reaches exclude the most reduced model

proteins. A theoretical explanation for this phenomenon is beyond

the scope of this study, but as will be shown below, the

compositional difference between model proteins is proportional

to the range of their relative abundances in metastable equilib-

rium.

Effects of Revised Methionine Sidechain Group on the
‘‘Gradient’’ Model

In a previous study [19], a comparison was made, among

sampling locations, of the relative stabilities of model proteins

representing various functional annotations in the Bison Pool

metagenome. The results were used to formulate an operational

linear correlation between temperature and redox conditions,

represented by the logarithm of activity of hydrogen (log aH2 aqð Þ ).

That equation, corrected for misplaced parentheses appearing in

[19], is

log aH2 aqð Þ~{11z3=40|T 0Cð Þ : ð2Þ

Eq. (2) is used here as a reference indicating the increase in

oxidation potential down the channel of the hot spring, which is

also reflected in field-based measurements of inorganic species

[19]. Below, we refer to this reference line as the ‘‘gradient’’ model

for redox conditions in the hot spring.

Revised values of the standard Gibbs energy and enthalpy of

formation of the aqueous methionine sidechain group ([Met]) were

Figure 1. Average oxidation state of carbon ( �ZZC), calculated using Eq. (1), of the model proteins for each of the major phyla listed in
Table 2. Lines are drawn to connect the points for the same phylum identified at multiple sampling locations.
doi:10.1371/journal.pone.0072395.g001

Metastable Equilibrium Abundances of Phyla
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recently published [27]. This revision, to more positive values of

DG
0

f of aqueous methionine and [Met], improves the consistency

between the calculated properties of methionine and the

experimental enthalpy of combustion of the crystalline amino

acid [27]. To assess the effect of this revision on the predicted

relative stability limits of the proteins, a series of T-log aH2 aqð Þ

diagrams for model proteins in the gradient model [19] is shown in

Fig. 2, calculated using both the old [16] and new [Met] group

properties. The lines representing Eq. (2) cross the stability fields at

similar positions in both cases. Therefore Eq. (2) is used as a

reference line, without modification, but the updated properties of

[Met] are used in the present study.

Using the updated thermodynamic properties of [Met], stability

fields for site 3 appear in the diagrams for model proteins for

transferase and synthase shown in Fig. 2, which was not the case

previously [19]. Compared to the other sites, the proteins at site 3

have an overall lower abundance of methionine (overall percent-

age methionine equal to 1.98, 2.02, 1.90, 2.01 and 2.02 at sites 1–

5, respectively, showing a significant depletion at site 3 compared

to the variation among other sites), which is associated with a

depletion of sulfur in model proteins at that site apparent in Fig. 3

of [19]. The appearance of stability fields for site 3 is therefore an

expected result because a lower proportion of methionine is

associated with a lower DG
0

f per residue using the updated

properties of [Met]. Stability fields for model proteins from site 3

that were not apparent in [19] also appear for a couple of other

functional categories (ATPase, protease; see Figure S1). The

representation of greater numbers of locations in the hot spring on

these diagrams lends support to the notion of a progression of local

metastable equilibrium states that link the geochemical conditions

and the amino acid compositions of proteins in the hot spring [19].

That outcome, however, is not a prerequisite for the community-

based model described in the present study.

Optimizing the Metastable Equilibrium Model with a
Redox Variable

Although values for log aH2 aqð Þ as a function of temperature were

derived in the gradient model of our previous study (Eq. 2), here

we use this redox variable to optimize the metastable equilibrium

calculations for relative abundances of phyla. The metastable

equilibrium abundances of the residues of the model proteins were

calculated as functions of log aH2 aqð Þ as described in the Methods.

The results of models with variable log aH2 aqð Þ are shown in Fig. 3

(top row) for sites 1, 3 and 5. The relative abundances of the model

proteins in metastable equilibrium strongly depend on the activity

of hydrogen; in general, the computed relative abundances

increase with increasing activity of hydrogen for those model

proteins with more negative �ZZC values, and vice versa. The

computed relative abundances of the proteins change more rapidly

with changing log aH2 aqð Þ at site 1 than at sites 3 or 5. Note, for

example, that while the range of log aH2 aqð Þ is the same in all plots

Figure 2. Predominance diagrams for selected groups of model proteins in the ‘‘gradient’’ model [19] as a function of T and
log aH2 aqð Þ . The model proteins have amino acid compositions taken from the bulk metagenome at each site (‘‘overall’’) or from sequences having the

indicated functional annotations (‘‘transferase’’, ‘‘synthase’’). Each plot depicts the stability relations among five model proteins, one from each site,
indicated by the numbers. Numbers that do not appear in a given plot correspond to proteins that are less metastable than the others over the entire
T -log aH2 aqð Þ range that is shown. Plots (a–c) were constructed using the same set of thermodynamic data as used in [19] and closely reproduce the

corresponding plots in Figs. 5b and 6 of that paper. Plots (d–f) were computed in this study using a revised, to a less negative value, standard Gibbs
energy of formation of the methionine sidechain group taken from [27]. The less negative Gibbs energy of the methionine sidechain group tends to
stabilize proteins that have a lower methionine content, resulting in the appearance of stability fields for site 3 in plots (e) and (f). The dashed lines in
all figures indicate values of log aH2 aqð Þ calculated using Eq. (2).

doi:10.1371/journal.pone.0072395.g002

Metastable Equilibrium Abundances of Phyla
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shown in Fig. 3, the range of relative abundances extends to both

higher (above 0.5) and lower (closer to 0) values in Fig. 3a (site 1) as

compared to Fig. 3c (site 5). The greater degree of variation at site

1 is reflected in a more tightly constrained optimum for the value

of log aH2 aqð Þ at this site (see discussion of DGtr below). This

behavior is consistent with the greater range of �ZZC of model

proteins at site 1 (Fig. 1), which is related to a greater range of

stoichiometries of the relevant compositional variable (H2) in the

formation reactions of the model proteins. The differences in

reaction stoichiometry in turn lead to relatively greater differences

in chemical affinity (A� in Eqs. 6–7), at the limits of log aH2 aqð Þ

shown in Fig. 3, for the formation reactions of the proteins at site 1

compared to those at the other sites.

In the bottom row of Fig. 3, the Gibbs energy of transformation

(DGtr), representing the energetic difference between metastable

equilibrium and observed assemblages is plotted as a function of

log aH2 aqð Þ . Optimal values of log aH2 aqð Þ , i.e. those that tune the

model to best fit the observed relative abundances, are indicated

by the minima in DGtr. The optimal values of log aH2 aqð Þ in the

community model (this study) are different from those calculated

using Eq. (2) derived using the gradient model of our earlier study

[19], as can be seen by the offset between the dashed and dotted

lines in the lower row of Fig. 3. The optimization was also

performed for sites 2 and 4; the optimal values of log aH2 aqð Þ for all

sites are listed in Table 1. The minimum values of DGtr are lower

at sites 3–5 than at sites 1 and 2, indicating a greater degree of

equilibration for the lower-temperature sites. This tendency

toward equilibration stands in contrast to the inorganic reactions

supporting chemotrophic metabolism, many of which have higher

affinities at lower temperatures (see Table S4 of [18]). The specific

departures from metastable equilibrium in the present model may

be explained by other energy inputs and/or differing growth

efficiencies (see below).

As shown in Fig. 4, the calculations of optimal log aH2 aqð Þ using

the community model yield discrete points that have a similar

overall slope at sites 1–3 to the gradient model of [19] represented

by Eq. (2). The increase in log aH2 aqð Þ with temperature supports a

less negative value of chemical affinity of protein synthesis, i.e. a

reduced cost to form the proteins at site 1 (see Table 5 in [19]). In

the community model (this study) there is a pronounced shift

toward more oxidizing conditions, or lower log aH2 aqð Þ , at lower

temperatures compared to the gradient model. While it should be

Figure 3. Calculated relative abundances of model proteins in metastable equilibrium (aequil) for the residue-normalized model
proteins for the phyla listed in Table 2 for sites 1, 3 and 5 as functions of log aH2 aqð Þ . Values of aequil were calculated using Eqs. (3–7). The

Gibbs energy of transformation (DGtr ; Eqs. 17–18), quantifying the difference between the calculated metastable equilibrium and observed relative
abundances, which were generated by counting BLAST hits, is shown in the lower row of figures. The dotted and dashed vertical lines indicate,
respectively, reference values of log aH2 aqð Þ calculated as a linear function of temperature (Eq. 2), and optimal values of log aH2 aqð Þ , listed in Table 1, that

minimize the value of DGtr.
doi:10.1371/journal.pone.0072395.g003
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noted that the values obtained in this study are subject to greater

uncertainty at lower temperatures due to the broader minimum in

DGtr (see Fig. 3), the sharp decrease in log aH2 aqð Þ seen in Fig. 4

mirrors the increase in dissolved O2 measured at sites 4 and 5 [18].

Comparison of Metastable Equilibrium and Observed
Relative Abundances

In Fig. 5 the metastable equilibrium degrees of formation of the

residues are plotted against the observed BLAST profiles. The

base 2 logarithms of the fractional relative abundances are used in

Fig. 5 because the whole-number numeric gradations on the axes

represent finer divisions (doublings) than the powers of ten that are

associated with unit changes of decimal logarithms, which are

more commonly used for chemical activities of species.

These figures can be interpreted in the following manner, using

Fig. 5a as an example. Both methods show that Aquificae are the

most abundant phylum at site 1, the source pool of the hot spring.

The metastable equilibrium method yields a calculated abundance

that is a factor of ca. 1.3 lower than the BLAST analysis. Other

larger differences are apparent. As an example, the MEM-RAMP

method yields a calculated abundance for Firmicutes that exceeds

that from the BLAST analysis by a factor of 5. In contrast the

BLAST analysis yields an abundance of Proteobacteria that

exceeds the metastable equilibrium calculation by a factor of 2.6.

As indicated by the values of DGtr, the differences between the

BLAST and MEM-RAMP results are greatest for site 1, and are

diminished at the other sites.

The relative abundances of model proteins shown in Fig. 5

represent a fit to the observed relative abundances by minimizing

the Gibbs energy while solving for the relevant redox parameter.

This redox parameter is log aH2 aqð Þ , which is optimized to reduce

the energetic difference between the metastable equilibrium and

observed assemblages. Therefore, the metastable equilibrium

relative abundances reflect geochemical constraints on the relative

stabilities of biomolecules, and quantitatively represent the

predictions of a hypothesis of an energy-minimizing link between

the environment and the composition of the microbial commu-

nities. This hypothesis concerns only the environment and the

composition of the communities, regardless of any specific

mechanism for how they originated; but the specific patterns –

both convergent and divergent – found in comparing the

predictions and observations may have implications for process-

oriented descriptions of the organisms or the community.

The optimized metastable equilibrium model is able to identify

the phylum with the highest abundance at all sites. The model

successfully reproduces the ranking of relative abundances of some

of the lower-abundance phyla at sites 4 and 5, including

Proteobacteria, Firmicutes and Bacteroidetes (Fig. 5d and e).

Because the metastable equilibrium model can reproduce many

aspects of the microbial community structure, it provides evidence

for energy minimization of the protein biomass within geochem-

ical constraints. Site 3 (Fig. 5c) exhibits the smallest Gibbs energy

of transformation between metastable and observed assemblages

at the optimal log aH2 aqð Þ , and can be said to be closest to

metastable equilibrium. No implications are made by the

metastable equilibrium model about how that energy minimiza-

tion occurred, so the model offers a set of predictions that are

independent of specific evolutionary mechanisms that could be at

play.

Points near the dashed lines in Fig. 5 represent phyla that are

close to metastable equilibrium. Points below the lines represent

phyla that in reality are more abundant than predicted by the

model. An increase in relative abundance, i.e. chemical activity, of

a model protein leads to a lower (less positive) affinity of its

formation reaction. Therefore, a higher-than-predicted observed

abundance for a phylum can be interpreted to be caused by an

additional input of energy – a contribution that is external to the

energetics of the model reaction between basis species and model

proteins. By adopting this interpretation we recognize that the

communities may approach, but are not completely in, metastable

equilibrium, owing to energetic contributions that can not be

accommodated by the model.

The relative abundances of Chloroflexi and Cyanobacteria at

sites 4 and 5 obtained by BLAST are greater than those predicted

by the metastable equilibrium model. These differences between

calculated and observed relative abundances are not as large as for

some other phyla, particularly at sites 1 and 2, and Bacteroidetes

at site 5, which are discussed below. A positive deviation of

observed relative abundances requires that the reactions ultimately

responsible for the formation of the model proteins for these two

phyla from inorganic sources are driven by a greater supply of

energy than is available to reactions to form other members of the

community. This finding is consistent with a phototrophic source

of energy for the biosynthesis of proteins in Chloroflexi and

Cyanobacteria that exceeds the energy available to organisms with

chemotrophic metabolisms. These results support the notion that

the biomass (on a specific or per-residue basis) of these two phyla is

more costly to produce, so sunlight may be used to drive the

production of a greater quantity of biomass than would be

obtained in a metastable equilibrium with the other phyla. A

higher specific demand of energy for the production of biomass in

phototrophs relative to chemotrophs might limit the range of

environmental conditions suitable for photosynthesis, if they are

controlled by the balance of supply and demand of energy [2].

Other underpredictions of relative abundance can be found at

other sites, for example Proteobacteria at sites 1 and 2 and

Bacteroidetes at site 5. These results may imply the existence of

mechanisms other than photosynthesis to account for additional

Figure 4. Values of log aH2 aqð Þ as a function of temperature
calculated using two different models. The dotted line represents
Eq. (2), which was used in [19] to calibrate a model for the relative
chemical stabilities of model proteins among sites (‘‘gradient’’ model).
The points connected by the dashed line indicate optimal values of
log aH2 aqð Þ that were derived in the present study by minimization of the

Gibbs energy of transformation between the metastable equilibrium
relative abundances of model proteins for phyla and the BLAST-derived
observed relative abundances of phyla.
doi:10.1371/journal.pone.0072395.g004
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energy input. As with phototrophy, heterotrophic metabolisms

may provide additional energy input to sustain biomass growth

beyond the range predicted by the metastable equilibrium model.

Rhodothermus marinus is a heterotroph [28] that is representative of

Bacteroidetes at Bison Pool (Table 3). It should be noted that

uncertainties in the observed relative abundances and the

compositions of model proteins may also arise from addition of

cells or DNA from sources outside the hot spring or errors in

assigning compositions to the model proteins based on classifica-

tions of metagenomic sequences.

In contrast to the phototrophic phyla at lower temperatures,

Deinococcus-Thermus is overpredicted by the model at high

temperatures, which is most apparent at site 2 where the model

predictions of its relative abundance are ,3 times greater than in

the BLAST profile (Fig. 5b). Therefore, in the thermodynamic

model there is an excess of energy allocated to this phylum; its

biomass has a lower specific energy compared to the other phyla.

This divergence may be partially accounted for by a relatively high

turnover rate of biomass. A high turnover rate would provide a

way to expend the excess energy, by decreasing the overall

efficiency of biomass production. Growth of Thermus aquaticus in

continuous cultures in the laboratory was found to occur with

lower efficiency than other thermophiles [29]. The actual

mechanism for decreased growth efficiency in that case was not

identified, but a partial decoupling between catabolism and

anabolism is plausible [30].

The results of the metastable equilibrium model can also be

visualized with the comparative bar charts in Fig. 6. It is important

to note that the presence or absence of phyla is not a prediction

made in this study; only their relative abundances can be predicted

using the metastable equilibrium model. The compositions of

proteins are derived from metagenomic sequences at individual

sites, so that even in a given phylum there are variations in the

compositions of model proteins (Fig. 1). The compositional

variation in model proteins contributes to the ability of the

proposed model to track the changing relative abundances of the

phyla through the hot spring.

Comparison with Other Models for Microbial
Communities

Another model for equilibrium concentrations of microbial

biomass (E. coli and S. cerevisiae) is the computation of ‘‘virtual

equivalent concentration at equilibrium’’ (VECE) [26]. The major

similarity with the present study lies in using taxon-specific

chemical formulas and Gibbs energies. The results of the VECE

model represent the stable equilibrium between biomass and the

environment, corresponding to very low abundances of various

cells. In contrast, in the current study the relative abundances of

the model proteins in metastable equilibrium were calculated.

Also, here the chemical formulas of the proteins were normalized

by number of residues, so that effects of varying protein length are

removed.

Figure 5. Comparison of calculated metastable equilibrium relative abundances of model protein residues (aequil) with observed
relative abundances of phyla generated by counting BLAST hits (aobs). Values of aequil were calculated using values of log aH2 aqð Þ , listed in

Table 1, that minimize the Gibbs energy of transformation (DGtr) between the metastable equilibrium and observed distributions.
doi:10.1371/journal.pone.0072395.g005
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In this study, the metastable equilibrium model results in

deterministic predictions about the relative abundances of specific

taxa. The mechanisms of community assembly are not explicitly

considered, and this sets the metastable equilibrium model apart

from process-based models such as neutral community models

(NCM) [11,12] that yield probability distribution functions, or, in

a discrete case, counts of taxa for a bin of relative abundance. In

contrast, the discrete outputs of the metastable equilibrium model

are relative abundances of each specific taxon in the model.

Therefore, the metastable equilibrium model is independent from,

and might be used to complement, process-based models of

microbial community assembly. Like the continuum NCM

[11,12], the metastable equilibrium model also has the inherent

flexibility to reproduce any particular taxon distribution, but that

outcome is dependent not on rates of birth, death and immigration

(in the case of NCM) but on the relative Gibbs energies of the

biomass, and on the temperature, pressure, and chemical

potentials used to describe the physical-chemical environment.

This versatility in modeling specific distributions is perhaps an

advantage of the geochemically constrained metastable equilibri-

um approach that could complement more mechanistically based

models in ecology.

Metastable equilibrium does not imply complete dominance of

a single, fittest species, but rather a combination of taxa (in this

case, phyla) coexisting at different abundances. Again, the

deterministic chemical equilibrium model shares this characteristic

with stochastic models of communities [31]. An implication of the

metastable equilibrium model is that increased fitness, when

quantified in reductionist terms as energetic cost of biomass

synthesis, is not ‘‘lowest energy’’ but ‘‘right amount of energy’’

given the environmental conditions and relative abundance of the

organism in the population.

Conclusions

Observed phylum-level abundance profiles from BLAST

classifications of metagenomically derived protein sequences in

the Bison Pool metagenome were modeled using metastable

equilibrium among model proteins for each phylum. Measure-

ments of chemical activities of basis species were used in the

calculations, except for log aH2 aqð Þ , which was varied in order to

minimize the distance between the calculated and observed

assemblages. The major findings of this study are:

1. Along the outflow channel, there is an increase in the average

oxidation state of carbon (�ZZC) of the model proteins for major

phyla. The range of values of �ZZC, reflecting compositional

differences among phyla, decreases at lower temperatures

(Fig. 1).

2. A published revision of the standard-state Gibbs energy of the

methionine sidechain group to a higher value, making it less

stable, leads to relative stabilization of proteins with lower

sulfur content, including those from the photosynthetic fringe

(site 3). The appearance of site 3 on revised stability diagrams

for model proteins based on functional annotations (Fig. 2)

supports the notion of a progression of metastable equilibrium

states along the the outflow channel.

3. The Gibbs energy of transformation between the metastable

equilibrium assemblages of model proteins for phyla and the

observed abundances, calculated using an expression based on

chemical affinity (DGtr), and using the information-theoretic

difference (DGinf ), were found to give equivalent results when

normalized chemical formulas are used. Optimal values of

log aH2 aqð Þ that minimize DGtr for each site were calculated.

The results show that the lower-temperature sites are generally

closer to metastable equilibrium (Figs. 3, 5).

4. Optimal values of log aH2 aqð Þ were found to decrease along the

outflow channel, consistent with an increase in the oxidation

potential of the hot-spring water as it cools and reacts with

atmospheric gases and with metabolic products of the biofilms.

The decrease in log aH2 aqð Þ found in the current study is in the

same direction, but more pronounced than values taken from a

previously published equation that represents the relative

stabilities of model proteins based on functional annotations

(Fig. 4).

5. The overall resemblance of the model predictions to the

observations indicates that more abundant organisms tend to

be composed of proteins that have a relatively lower energy

demand for formation at equal thermodynamic activities, and

vice versa. The metastable equilibrium model underpredicts

the relative abundances of Cyanobacteria and, to a lesser

extent, Chloroflexi at sites 4 and 5 (Fig. 5). The deviation of the

real system from the metastable equilibrium state is consistent

with the onset of photosynthesis as an input of energy that is

not available to the higher-temperature chemotrophic com-

munities.

Figure 6. Community profiles showing abundances of phyla (a) observed in BLAST-based classification of metagenomically
inferred protein sequences, and (b) calculated using the metastable equilibrium model.
doi:10.1371/journal.pone.0072395.g006
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The approach described here is generally applicable to

ecosystems where geochemical parameters as well as chemical

compositions, relative abundances and standard Gibbs energies of

the major biochemical constituents of organisms can be measured

or estimated. Gibbs energy minimization is an established

technique used for predictions of equilibrium mineralogy from

the temperature, pressure and bulk composition of a rock. The

present model extends those concepts to local Gibbs energy

minimization and metastable equilibrium predictions of relative

abundances of organisms in microbial ecosystems. Unlike predic-

tions of minerals in rocks, the presence or absence of the organisms

is not a feature of the metastable equilibrium model. Nevertheless,

the construction of the metastable equilibrium model enables

predictions linking geochemistry, biomolecular composition, and

relative abundances of microbial phyla, and reveals an energetic

basis for many of the observed patterns.

Methods

BLAST, Community Profile and Model Proteins
All microbial protein sequences in Reference Sequence (RefSeq)

database release 57 (2013-01-08) were downloaded from NCBI

(http://www.ncbi.nlm.nih.gov/refseq/). The number of sequences

is 24,477,649 covering 7415 unique taxon identifiers. From this, a

BLAST [20] version 2.2.24 database was constructed using

formatdb. Amino acid sequences for inferred proteins in the Bison

Pool metagenome, automatically produced by the IMG/M

pipeline, were downloaded from the website of the Joint Genome

Institute (JGI) (http://img.jgi.doe.gov/m). A search of matches of

the metagenomic query sequences in the RefSeq target database

was performed with the blastp program, using default E value

(10.0) and similarity parameters. Using the generated blastp output

files, the hits were filtered to keep only those with a similarity score

of §30% and E value of ƒ10{5. The number of hits filtered at

this step was more affected by the E value cutoff than the similarity

score cutoff. After these filtering steps, only the first database hit

for each query sequence was kept. The resulting tabular BLAST

output files are provided in Dataset S1.

In the blastp output files, there are hits to 98894 unique

sequences in the RefSeq database. The identifiers (gi numbers) of

these sequences are associated with taxonomic identifiers (taxid) in

the file gi.taxid.txt in Dataset S2. The gi-taxid mappings were

extracted from the file RefSeq-release57.catalog on the NCBI ftp

site (ftp://ftp.ncbi.nih.gov/refseq/release/release-catalog, ac-

cessed on 2013-01-19). For each taxid, the phylum name was

obtained from the names.dmp and nodes.dmp files that are part of

the taxonomy data available on the NCBI ftp site (ftp://ftp.ncbi.

nih.gov/pub/taxonomy/, accessed on 2013-01-15). Individual

phyla whose sequence counts numbered at least 3% of the total

number of BLAST hits at each site were considered to be the

major phyla modeled in this study. The amino acid compositions

of all sequences assigned to each major phylum were averaged to

give the amino acid compositions of model proteins that are

provided in the file bison_protein.csv in Dataset S2.

Thermodynamic Conventions
We generalize the calculations of metastable equilibrium

abundances in systems of proteins by writing, for each protein, a

reaction to form one mole of the residue-normalized formula of

the protein from the basis species HCO3
{, H2O, NH3 aqð Þ, HS{,

H2 aqð Þ and Hz. The reactions represent mass-balance constraints

on possible transformations among proteins, each of which has a

standard Gibbs energy that is also associated with the specific

amino acid composition of the protein. All species are taken to be

in the aqueous phase; the standard state corresponds to unit

activity of the pure solvent (H2O), or unit activity of solute species

(other than H2O) in a hypothetical one molal solution referenced

to infinite dilution at any temperature and pressure.

A ‘‘residue formula’’ (or just ‘‘residue’’) represents the length-

normalized chemical formula of a protein. For example, the

residue formula of a protein with a sequence length of 129 amino

acids with chemical formula C613H959N193O185S10 has a chemical

formula of.

C4:752H7:434N1:496O1:434S0:078 (coefficients rounded to 3 decimal

places) and a standard molal Gibbs energy (DG
0

f ) that is 1/129 that

of the whole protein. It has been shown that mass-action equations

for chemical reactions between residue formulas of proteins are

consistent with metastable coexistence of proteins with comparable

chemical activities rather than total predominance and either-or

type behavior when non-normalized protein formulas are used

[32].

The ionization states and standard Gibbs energies of the

proteins in the reactions are estimated using amino acid group

additivity for unfolded proteins [16] including contributions from

ionizable sidechain and terminal groups whose degrees of

ionization depend on temperature and pH. As noted elsewhere

[16,19,32], the standard Gibbs energy changes of protein folding

reactions are much smaller than the standard Gibbs energies of the

proteins themselves, and tend to cancel in metastability calcula-

tions (where proteins occur on both sides of the transformation

reactions), so the standard Gibbs energies of protein folding have a

negligible, or at least secondary effect, in calculations of the

relative chemical stabilities of proteins, and are not considered

below. Recently updated values for the contributions of the

methionine sidechain group ([Met]) [27] do, however, have a

significant effect on the relative stabilities of proteins, and are used

in the present study.

The standard Gibbs energies of the proteins and basis species at

elevated temperatures and pressures are calculated using the

revised [33] Helgeson-Kirkham-Flowers equation of state [34] for

aqueous species, with thermodynamic data and equation-of-state

parameters for the basis species taken from [35–37]. As used here,

‘‘standard Gibbs energy’’ refers to a specified temperature (T ) and

pressure (P) that are in general different from the reference

temperature (Tr) and pressure (Pr) of 25uC and 1 bar. However,

since all temperatures considered here are below 100uC, the value

of P is always 1 bar. The activities of the basis species used in the

calculations are log aHCO{
3
~{3, log aNH3 aqð Þ~{4,

log aHS{~{7, log aH2O~0, log aHz~{pH taken from

Table 1, and log aH2 aqð Þ taken from Eq. (2) [19] or used as a

fitting parameter to optimize the model.

Chemical Affinity
For the rth reaction at specified temperature and pressure,

chemical affinity (Ar) is calculated using

Ar~2:303RT log (Kr=Qr) , ð3Þ

where Kr and Qr denote the equilibrium constant and activity

quotient of the reaction, R stands for the gas constant, and T
stands for temperature in kelvin. The symbol log is used to

indicate decimal (base 10) logarithms; the 2.303 is shorthand for

the natural logarithm of 10. The value of Kr is calculated using

log Kr~{DG0
r=2:303RT , ð4Þ

where DG
0
r stands for the standard Gibbs energy change of the rth
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reaction at a specified pressure and temperature. The value of Qr

is calculated using

log Qr~
X

i

ni,r log ai,r , ð5Þ

where ni,r and ai,r represent the stoichiometric reaction coefficient

and the chemical activity of the ith species in the rth reaction,

respectively, and the summation is over all species in the reaction.

From this point forward, we use Ar to denote the affinities of

reactions written for the formation of one mole of the residue

formula of a protein from the basis species, i.e. nresidue,r~1. A

specific example is described in detail further below. In this

thermodynamic model for open systems, chemical transformations

among residues take place at constant chemical potential of each

basis species. In order to quantify the metastable equilibrium

activities of residues and the Gibbs energies of transformation from

metastable equilibrium to non-equilibrium assemblages, it it

convenient to define A�r as

A�r:Arz2:303RT log aresidue,r , ð6Þ

where aresidue,r denotes the activity of the residue in the rth

reaction. Because the formation reactions of the residues all have

nresidue,r~1, changing the value of aresidue,r has no effect on the

value of A�r , which can be seen by comparing Eq. (6) with Eqs. (3)

and (5). The starred affinity A�r is ‘‘starved’’ of the activity of the

residue; for a given residue it is a function only of temperature,

pressure and chemical activities of the basis species. Where

energetic properties at equal thermodynamic activities are

discussed, it is in reference to A�r in Eq. (6).

Boltzmann Distribution as a Metastable Chemical
Equilibrium

The activities (aequil) and degrees of formation (i.e. relative

abundances expressed as mole fraction, aequil), of the residue

formulas in a metastable equilibrium assemblage of model proteins

are calculated using

aequil~
aequilP

aequil

~
eA�r =RTP

eA�r =RT
, ð7Þ

where the summations are taken over all of the residues in the

assemblage. Eq. (7) relates chemical affinities (A�r ) to relative

abundances of residue formulas in a system in metastable

equilibrium in the same way that a physical interpretation of the

Boltzmann distribution relates energy levels (e.g. of electronic

configurations of an atom) to occupancies. The summation of

activities in the denominator of Eq. (7) is only valid if the activities

are approximated as being equal to concentrations, i.e. activity

coefficients of all species are equal to unity. For a given total

activity of residues, the aequil of each residue computed using Eq.

(7) can be substituted into Eq. (3), with the result that all Ar are

equal, but not necessarily equal to zero; this satisfies the definition

of metastable equilibrium [38].

The methods for computing the metastable equilibrium

activities of the model protein residues can be summarized as 1)

calculate the standard Gibbs energies of the formation reactions of

the residues from the basis species, 2) combine the standard Gibbs

energies with chemical activities of the basis species to calculate A�r
for each residue in the system, 3) use the Boltzmann distribution to

calculate the degrees of formation (relative abundances) of the

residues in metastable equilibrium. In our previous study [19],

relative abundances of the residues were converted to relative

abundances of the model proteins using the average lengths of the

fragments. However, because the model proteins (in both the

previous and present studies) were derived from fragmentary

metagenomic sequences, no reliable length information is avail-

able. Therefore, in building the present model from fragmentary

environmental sequence data, we now find it advisable to make no

assumptions about the lengths of the proteins and instead refer

only to relative abundances of residue formulas in metastable

equilibrium.

Energetic Distance from Equilibrium
In an open system, calculating the energetic difference between

an assemblage of species in metastable equilibrium and any

observed assemblage of chemical species must take account of the

Gibbs energies of all reactions as they proceed under constant

temperature, pressure, and chemical activities of basis species. In

the present model the chemical species of interest are the residue

formulas of the proteins. First consider the differential Gibbs

energy of the system (drG) occurring with an increment of reaction

progress for the rth reaction (djr):

drG~{Ardjr : ð8Þ

Eq. (8) is simply a rearrangement of the definition of chemical

affinity [38]. As noted above, all formation reactions of residues

are written with nresidue,r~1. Recall that each formation reaction is

uniquely written for a single residue, so the index r can be used

either for residues or their formation reactions. Therefore,

dnr

djr

~nresidue,r~1, ð9Þ

where dnr stands for the differential number of moles of the

residue in the rth formation reaction. Combining Eqs. (8) and (9)

permits writing an expression for drG in terms of moles of residue

formed (or destroyed) in place of the reaction progress variable:

drG~{Ardnr : ð10Þ

The derivatives in Eq. (10) consist of extensive variables. By

dividing both sides of Eq. (10) by 1 kg H2O, we can write

drG~{Ardmr , ð11Þ

where dr
�GG denotes the differential molal Gibbs energy of the

system associated with net formation or destruction of the rth
residue, and dmr stands for the differential molality of the rth
residue. In the limit of ideality,

drG~{Ardar , ð12Þ

where dar stands for the differential activity of the residue, which

in an ideal solution containing 1 kg of H2O is equal to differential

molality (dar~dmr). Incorporation of non-ideal interactions in this

derivation would require additional terms for activity coefficients

that are not considered at present.

If the initial activity of the rth residue is given by ar,0 and the

final activity after chemical transformation of the system by ar,1, it
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follows that

DrGtr~{

ðar,1

ar,0

Ardar , ð13Þ

where Dr
�GGtr denotes the molal Gibbs energy change associated

with net formation or destruction of the rth residue as a result of

the chemical transformation of the system.

As written, Eq. (13) has no general analytical solution because

Ar is a function of ar (Eqs. 3 and 5). Combining Eqs. (6) and (13)

gives

DrGtr~{

ðar,1

ar,0

A�r {2:303RT log ar

� �
dar , ð14Þ

in which A�r is independent of ar, as noted above in relation to Eq.

(6). Therefore, Eq. (14) can be integrated to write

DrGtr~{A�r ar,1{ar,0ð Þz2:303RT

ar,1 log ar,1{ar,0 log ar,0{ar,1zar,0ð Þ :
ð15Þ

The overall molal Gibbs energy of transformation of the system

(DGtr) can then be calculated from

DGtr~
X

r

DrGtr : ð16Þ

If the ar,0 correspond to a metastable equilibrium assemblage,

then we expect to find D�GGtr§0 for any chemical transformation,

i.e. to form an observed assemblage that is not in metastable

equilibrium, taking place at constant T , P, and chemical activities

of the basis species.

In this study, the primary variable denoting the relative

abundances of the model proteins and of the microbial phyla is

not activity (a) but instead fractional degree of formation (a). In all

of the model computations, the total activity of protein residues is

set equal to unity. If follows, then, that analogs of Eqs. (15–16) in

terms of the observed and metastable equilibrium degrees of

formation (aobs and aequil, respectively) can be written as

DrGtr~{A�r aobs{aequil

� �
z2:303RT

aobs log aobs{aequil log aequil{aobszaequil

� � ð17Þ

and

DGtr~
X

r

DrGtr : ð18Þ

Because of the dual conventions of unit activity coefficients and

unit total activity of residues, the DrGtr and DGtr in Eqs. (17–18)

are implicitly molal quantities, unlike their counterparts in Eqs.

(15–16), which were explicitly derived for a solution containing

one kg of H2O.

An Information-theoretic Measure of Distance from
Metastable Equilibrium

The terms in Eq. (15) are related to work in a chemical-potential

field (represented by A�) and to Gibbs energy of ideal mixing

(ar log ar modified by 2:303RT ) which combine to yield a measure

of energetic difference between two states of an open reacting

system. An information-theoretic measure known as the relative

entropy [39], Kullback measure for the increment of information

[40], or Kullback-Leibler divergence is

I~
X

i

pi log
pi

p0
i

, ð19Þ

where I is the relative information difference between an initial

probability distribution p0
i and a final probability distribution pi. It

has been noted that Eq. (19) is related to the difference in free

energy between the states (e.g. [39]). An expression for the

information-theoretic entropy of transition (DSinf ), as applied to

discrete states of a chemical system, results from substituting p0
i

with the metastable equilibrium relative abundances of species

(aequil) and pi with the observed relative abundances of species

(aobs):

DSinf =2:303R~{
X

i

ai,obs log
ai,obs

ai,equil

: ð20Þ

The calculation of molar values of DSinf using Eq. (20) is provided

for by the factor of 2:303R, which includes the gas constant (R)

and a multiplier (ln 10&2:303) that when removed from the

equation transforms the base 10 logarithm to a natural logarithm.

If the transition is an ideal mixing process, so that the associated

enthalpy of the transition is zero [41], the Gibbs energy of

transition (DGinf ) associated with the information-theoretic entro-

py difference can then be written as

DGinf =2:303RT~
X

i

ai,obs log
ai,obs

ai,equil

: ð21Þ

We found that calculations of DGinf using Eq. (21) yield results

that are numerically equal to the values of D�GGtr calculated using

Eqs. (15–16), shown in the bottom row of Fig. 3. This finding is

consistent with an equivalence between the information-theoretic

concept of relative entropy and a thermodynamic entropy of

transition accompanying chemical reactions when numbers of

moles of species are conserved, which is the case in the model

because the length-normalized formulas of proteins (‘‘residue

formulas’’) are the reactants. However, a trial calculation for a

different chemical system (homologous series of n-alkanes) having

a variable number of moles of species through the transformation

from metastable equilibrium to non-equilibrium, results in

unequal values of D�GGtr and DGinf . Further investigation may be

required to understand the differences, but the implied conse-

quence is that Eq. (21) only constitutes a measure of distance from

metastable equilibrium in chemical systems where reactions

between species conserve moles of species, and that Eqs. (15–16)

are applicable in the more general case for chemical systems where

reactions do not conserve total numbers of moles of species.
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Metastable Equilibrium Degrees of Formation: Example
Calculation

An example of the steps in the metastable equilibrium

calculation follows, and can be computed in software using the

equil.example() function in mem-ramp.R (Dataset S2). The overall

formation reaction from basis species for one mole of the length-

normalized model protein (residue formula) for Aquificae at site 1

can be written as

5:180HCO{
3 z1:352NH3z0:029HS{z10:934H2z5:189Hz

'14:074H2OzC5:180H8:171N1:352O1:465S{0:020
0:029 :

ð22Þ

The residue formula of the protein is available in protein_ta-

ble.csv in Dataset S2 along with the value of DG
0

r,P,T=RT for this

reaction (2193.29) computed at the temperature of site 1 (93.3uC).

The activities of the basis species are taken to be log aHCO{
3
~{3,

log aNH3 aqð Þ~{4, log aHS{~{7, log aH2O~0 and, for site 1,

log aHz~{7:35, and log aH2 aqð Þ~{3:38; this value of log aH2 aqð Þ

was found in this study to optimize the fit between the model and

observed relative abundances (Table 1). Combining these values

with Eqs. (5–6) yields A�22=RT~ 228.306 for the residue formula

for the model protein for Aquificae. Analogous calculations for the

remaining model proteins for site 1 give values of A�22=RT equal to

229.313, 230.267, 229.289, and 229.022, for the residue

formulas for model proteins for Crenarchaeota, Proteobacteria,

Deinococcus-Thermus and Firmicutes. Substituting these 5 values

of A�=RT into Eq. (7) yields metastable equilibrium degrees of

formation of the residue formulas (aequil) of 0.422 (Aquificae),

0.154 (Crenarchaeota), 0.059 (Proteobacteria), 0.158 (Deinococ-

cus-Thermus) and 0.206 (Firmicutes). The value of aequil is highest

for Aquificae, i.e. the model protein with the least negative value of

A�, illustrating an inverse relationship between the metastable

equilibrium abundance and the overall energy required to form

the protein at equal thermodynamic activities.

As noted above, the computed relative abundances of the

residue formulas are taken to be equal to those of the model

proteins because accurate protein-length information is not

available from fragmentary metagenomic sequences. Therefore,

at site 1, using the value of log aH2 aqð Þ specified above, the model

protein with the highest abundance in the metastable assemblage

is that for Aquificae, and the model protein for Proteobacteria is

the least abundant. These metastable equilibrium abundances are

the same as those shown in Figs. 5a and 6b.

The relative abundances of the phyla at site 1 in the observed

(BLAST) profile (aobs), in the order shown in Table 2 and used in

the example above, are 0.549, 0.198, 0.154, 0.058, and 0.041.

Substitution into Eqs. (17–18) of these values of aobs, and of A�

and aequil calculated above, gives a value of DGtr=RT~0:217.

Likewise, substitution of aobs and aequil into Eq. (21) gives

DGinf =RT~0:217.

Source Code and Software Package
The thermodynamic calculations were performed using func-

tions and data files that are part of the freely available CHNOSZ

software package [32], version 1.0.1, for the R software

environment [42]. The package is available for download from

the Comprehensive R Archive Network (CRAN, http://cran.r-

project.org/). The code used to construct the figures appearing in

this paper is provided in the file mem-ramp.R as part of Dataset

S2. The most recent release of the package, developed in

conjunction with this study, includes updates to data files and

functions used in the processing of the BLAST output and in the

calculations of metastable equilibrium abundances. The similarity,

E value, and maximum hits filtering were performed using the

read.blast() function in CHNOSZ. Besides the BLAST processing

functions, other features of the package that recently were

modified include improvements in the functions used to compute

the ionization states and standard molal properties of protein

ionization, incorporation of updated methionine group contribu-

tions and properties of crystalline sidechain and protein backbone

groups [27], and a function to calculate the Gibbs energy of

transformation (Eqs. 15–16).

Supporting Information

Figure S1 Predominance diagrams. Metastable equilibrium

predominance diagrams for model proteins in different functional

categories, as in Fig. 2, but with a more extensive set of model

proteins, for comparison with Figure 6 of [19].

(PDF)

Dataset S1 BLAST output. Protein BLAST tabular output

files listing first hit for each query sequence.

(ZIP)

Dataset S2 Data files. Data files and source code used in this

study, including the files taxid_names.csv (names at different

taxonomic levels for microbial taxa in RefSeq 57), prep.R (R

source code, with functions to prepare data files), gi.taxid.txt

(unique gi numbers and taxon identifiers (taxid) for all BLAST

hits), bison_protein.csv (amino acid compositions of model

proteins for the phyla), mem-ramp.R (R source code, with

functions to create each of the figures), and protein_table.csv

(model proteins, including information from Tables 2 and 3, and

values of �ZZC and DG
0

r). Note that prep.R contains functions to

process data files that are not provided as supporting information

(RefSeq and taxonomy files from NCBI and Bison Pool

metagenome from JGI), but that all figures can be produced

using the code in mem-ramp.R together with the provided data

files.

(ZIP)
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