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Abstract 

Potential climate change impacts on summer precipitation and subsequent hydrologic 

responses in the southwestern U.S. are poorly constrained at present due to a lack of studies 

accounting for high resolution processes. In this investigation, we apply a distributed hydrologic 

model to the Beaver Creek watershed of central Arizona to explore its utility for climate change 

assessments. Manual model calibration and model validation were performed using radar-based 

precipitation data during three summers and compared to two alternative meteorological 

products to illustrate the sensitivity of the streamflow response. Using the calibrated and 

validated model, we investigated the watershed response during historical (1990-2000) and 

future (2031-2040) summer projections derived from a single realization of a mesoscale model 

forced with boundary conditions from a general circulation model under a high emissions 

scenario. Results indicate spatially-averaged changes across the two projections: an increase in 

air temperature of 1.2 ºC, a 2.4-fold increase in precipitation amount and a 3-fold increase in 

variability, and a 3.1-fold increase in streamflow amount and a 5.1-fold increase in variability. 

Nevertheless, relatively minor changes were obtained in spatially-averaged evapotranspiration. 

To explain this, we used the simulated hydroclimatological mechanisms to identify that higher 

precipitation limits radiation through cloud cover leading to lower evapotranspiration in regions 

with orographic effects. This challenges conventional wisdom on evapotranspiration trends and 

suggest that a more nuanced approach is needed to communicate hydrologic vulnerability to 

stakeholders and decision-makers in this semiarid region. 

 

Keywords: Watershed hydrology; climate change; distributed hydrologic model; North 

American Monsoon; evapotranspiration. 
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1. Introduction 

The vulnerability of the southwestern U.S. to climate change is of particular interest to 

water managers as this arid and semiarid region has historically been characterized by high 

hydroclimatic variability (Sheppard et al. 2002, Woodhouse et al. 2010). Dramatic changes to 

seasonal snowpack amounts or timing might lead to a decreased reliability in water supply as 

well as a reexamination of water infrastructure operations. For example, Christensen et al. (2004) 

found that impacts from climate change projections would degrade the performance of water 

supply and hydropower systems in the Colorado River. Similarly, Serrat-Capdevila et al. (2013) 

found that a range of projected impacts from climate change in the Verde River will influence 

downstream water supply in Phoenix, Arizona for the bimodal precipitation of the region. While 

prior studies have focused on the winter season (e.g., Christensen et al. 2004; Seager et al. 2007), 

relatively little is known regarding the regional vulnerability to changes in the summertime 

North American monsoon (NAM). Cook and Seager (2013) indicate the possibility of a delay in 

NAM timing (typically from July to September), while Serrat-Capdevila et al. (2013), Bukovsky 

et al. (2013) and Robles-Morua et al. (2015) found increases in NAM precipitation from a range 

of different climate projections. The implications of a change in the NAM are of regional 

interest, in particular for downstream water managers who might need to adapt operations and 

infrastructure to handle variations in the bimodal precipitation regime.  

The NAM in the southwest U.S. is characterized by convective storms that are localized 

in nature and of short duration and high intensity, leading to flooding in small areas over short 

time periods (Adams and Comrie 1997, Gochis et al. 2006). As such, the use of coarse (monthly, 

100 km resolution) general circulation models (GCMs) to provide inputs for regional watershed 

hydrology models has been criticized (see Wilby 2010, Kundzewicz and Stakhiv 2010). One 
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approach to address this is through dynamical downscaling of GCM scenarios using mesoscale 

atmospheric models that can translate coarse projections into higher resolution (hourly, 10 km) 

meteorological forcing. This can help improve the reliability of climate simulations in regions 

with fine-scale features such as rugged terrain, water bodies or land cover differences (Castro et 

al. 2007, Dominguez et al. 2012), leading to more realistic precipitation fields. Similarly, the use 

of coarse hydrologic models in climate change assessments limits their ability to resolve the fine-

scale meteorological forcing and watershed properties that control hydrologic responses, in 

particular during the NAM (e.g., Ellis et al. 2008; Serrat-Capdevila et al. 2013, Robles-Morua et 

al. 2015). Distributed hydrologic models, on the other hand, have a wider appeal for climate 

change impact studies due to their ability to provide insight on the spatial and temporal details of 

the rainfall-runoff transformation (e.g., Xu and Singh 2004, Kampf and Burges 2007) 

In this study, we conduct high resolution (~120 m, hourly) hydrologic projections for 

summer conditions in a semiarid watershed of central Arizona. Our approach is based on 

developing meteorological fields over historical (1990-2000) and future (2031-2040) periods by 

using boundary conditions from a single GCM, the Hadley Center Coupled Model version 3 

(HadCM3), with a mesocale simulation using the Weather Research and Forecasting (WRF) 

model. The meteorological fields are then applied as forcing in a distributed hydrologic model, 

known as the Triangulated Irregular Network (TIN)-based Real-time Integrated Basin Simulator 

(tRIBS), for the Beaver Creek watershed, located upstream of Phoenix, Arizona. Manual model 

calibration and model validation were performed using radar-based precipitation data during 

three summer seasons. Two additional products based on a rain gauge network and a reanalysis 

dataset were evaluated during these summer periods to illustrate the impacts of precipitation 

variability on the simulated hydrologic response. Hydroclimatological conditions during the 
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NAM are then evaluated for historical and future periods to determine the propagation of 

precipitation and temperature changes into streamflow, soil moisture and evapotranspiration. We 

performed analyses of basin-averaged conditions across the two periods and the spatial 

distribution of differences between summer averages obtained for the two periods in an effort to 

quantify how spatial patterns aggregate to the entire Beaver Creek watershed. In doing so, we 

identify and explain mechanistically how the climate change projection affects radiation and 

water availability that control evapotranspiration. Furthermore, this study provides a foundation 

upon which to build modeling activities that test a wider range of climate or land use change 

projections for supporting regional water managers in decision-making under uncertainty.  

 

2. Materials and Methods  

2.1. Study Watershed and Its Characteristics 

The Beaver Creek watershed is a sub-watershed of the Verde River (Fig. 1). With an area 

of approximately 1100 km
2
, the watershed has variable terrain and landscape characteristics that 

are representative of the Mogollon Rim transition zone of central Arizona. Elevations range from 

~1,000 to 2,600 m above sea level and are characterized by significant canyons incised into the 

Colorado Plateau. Land cover varies with elevation from desert shrub in the lowlands, through 

pinyon-juniper woodlands, and up to ponderosa pine forests at the higher elevations (e.g., Baker 

1999; Lopes et al. 2001). Soils are composed primarily of clay, clay loam and loam, developed 

on basalts and cinders of volcanic origin. Table 1 presents the coverage of the major soil and 

land cover classes for the Beaver Creek watershed as determined from the data sources described 

in section 2.2.2. Summer precipitation during the NAM (July to September) in the watershed 

accounts for ~40% of the annual total (Baker 1986), producing ~15% of the annual streamflow 

(Baker 1982). The watershed is sampled by a network of ten automated rain gauges operated 
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continuously by the Yavapai County Flood Control District and three continuous stream gauges 

(Dry Beaver Creek (USGS 09505350) near Rimrock, AZ, Wet Beaver Creek (USGS 09505200) 

near Rimrock, AZ, and Beaver Creek outlet (USGS 0950550) at Camp Verde, AZ) operated by 

the U.S. Geological Survey (USGS), with more limited data over 2004-2008 for the outlet site 

(Fig. 1). In addition, significant streamflow responses were identified at all stream gauging 

stations only during the summers of 2005 to 2007, limiting our study period to this interval.  

 

2.2. Distributed Hydrologic Model and Its Application 

2.2.1 Model Description 

The TIN-based Real-time Integrated Basin Simulator (tRIBS) was selected to conduct the 

summer season simulations in the Beaver Creek watershed. tRIBS is a spatially-explicit model of 

hydrologic processes (Ivanov et al. 2004; Vivoni et al. 2007). To make full use of the available 

geospatial datasets, tRIBS ingests terrain, soil, land cover, and meteorological conditions and 

resamples each to the model domain. A watershed is represented by a Triangulated Irregular 

Network (TIN) consisting of elevation, stream, and boundary nodes, which capture features with 

a reduced number of elements as compared to the original grid DEM (Vivoni et al. 2004). In 

tRIBS, Voronoi polygons are associated with each TIN node and serve as the finite-volume 

domain for water and energy balance calculations. For each Voronoi polygon, the model tracks 

the hydrologic response, including: (1) canopy interception; (2) evapotranspiration from bare soil 

and vegetated surfaces; (3) infiltration and soil moisture redistribution; (4) shallow subsurface 

flow; and (5) overland and channel flow. In prior studies, tRIBS has shown good performance 

with respect to hydrologic data in other semiarid watersheds (e.g., Vivoni et al. 2010; Mahmood 

and Vivoni 2011; Xiang et al. 2014). For this particular study, we emphasize the model ability to 

generate streamflow simulations at the outlet and interior locations as well as the time-averaged 
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spatial distribution of soil moisture, runoff and evapotranspiration. Additional details on the 

model can be obtained from Ivanov et al. (2004) and Vivoni et al. (2007, 2010). 

 

2.2.2 Model Domain, Parameterization and Initialization 

Spatial inputs for the Beaver Creek watershed model application include topography, soil 

texture, land cover and initial depth to the groundwater table (Ivanov et al. 2004). The watershed 

domain was delineated from a 30 m Digital Elevation Model (DEM) obtained from the USGS 

(Fig. 1) and converted into a TIN using the hydrographic procedure described by Vivoni et al. 

(2004). A stream network that matched available hydrography was included in the model 

domain, resulting in 76,624 Voronoi polygons or an equivalent cell size, re, of approximately 

120 m (Vivoni et al. 2005). This irregular sampling at high-resolution captures well the complex 

terrain (mesas, canyons, plateaus, valleys) of the Beaver Creek watershed as compared to coarser 

modeling efforts (4 to 12 km) in the region (e.g., Ellis et al. 2008; Serrat-Capdevila et al. 2013). 

The spatial distribution of surface soil texture was obtained from a high-resolution Soil Survey 

Geographic (SSURGO) database consisting of 73 different classes (NRCS 2010), aggregated 

into the nine major texture types shown in Fig. 2a. Low-conductivity clay soils and bedrock 

occupy the canyon walls and large regions at intermediate elevations in the watershed. The 

spatial pattern of land cover was obtained from the LANDFIRE database (Rollins 2009) that 

depicts vegetation properties at 10 m resolution, as shown in Fig. 2b. Land cover classes follow 

an organization with elevation (desert shrub, pinyon-juniper woodland, ponderosa pine forest), 

along with small urban areas and roads (labeled General Development in Table 1 and Fig. 2). 

The spatial resolution and classification fidelity represented in the model exceed those in 

previous studies in the region (e.g., Ellis et al. 2008; Serrat-Capdevila et al. 2013). 
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Model parameterization in terms of soil and vegetation conditions followed previous 

tRIBS applications where initial values were obtained from literature (e.g., Rawls et al. 1982, 

Mitchell et al. 2004, Ivanov et al. 2004, Vivoni et al. 2010, Robles-Morua et al. 2012) and 

assumed to be spatially uniform within each class. Table 3 lists the parameters associated with 

the dominant soil and land cover classes (see Hawkins 2012 for details). A manual calibration 

and validation exercise was conducted with respect to the observed streamflow at the three 

stream gauges for summer periods in 2005 (validation), 2006 (validation) and 2007 (calibration). 

These periods were selected based upon on simultaneous data availability from stream gauges, 

rain gauges and weather radar. To account for variations in the characteristics of the Wet and 

Dry Beaver Creek, the three main soil classes were treated separately in each sub-watershed. 

Manual model calibration involved varying soil and vegetation parameters to which the 

simulated streamflow was most sensitive within acceptable ranges, found to be the following 

parameters: saturated hydraulic conductivity (Ks), hydraulic conductivity decay parameter (f), air 

entry bubbling pressure (Ψb), and pore size distribution index (m) (also see Table 3). Manual 

calibration was based on prior studies using the model within semiarid and arid regions with 

complex terrain, for example Vivoni et al. (2010) and Robles-Morua et al. (2012). In addition, to 

help inform the calibration, Hawkins (2012) performed a simulation exercise at the Happy Jack 

station in the Wet Beaver Creek with respect to observed soil moisture and temperature at 

several depths for the summer of 2007, finding good agreement (not shown here for brevity).  

Model initialization consists of specifying a spatially-distributed depth to the water table 

which sets the initial soil moisture profile at each Voronoi polygon based on the assumption of 

hydrostatic equilibrium (e.g., Ivanov et al. 2004). In the absence of field information, the initial 

groundwater depth can be obtained from a long-term (10 yr) drainage experiment as described by 
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Vivoni et al. (2008b). This simulation allows a watershed to drain without any meteorological 

forcing from a completely saturated state under the influence of the specified terrain and soil 

properties. A rating curve between the groundwater state and the outlet streamflow is constructed 

as a means to initialize the model (Vivoni et al. 2008b). To do so, a spatially-variable depth to 

bedrock ranging from 5 to 15 m was assigned based upon the soil classification (Hawkins 2012). 

Fig. 2c presents the initial depth to groundwater assumed valid at the start of each summer period 

(June 1) leading to low streamflow (< 1 m
3
/s) at the Beaver Creek outlet. Thus, for the numerical 

experiments described next, the initial conditions were identical for all simulated summers.  

 

2.3. Numerical Experiments and Meteorological Forcing 

The numerical experiments consisted of two separate activities: (1) model calibration and 

validation for three summer periods (2005-2007), including a comparison across different 

meteorological products, and (2) model evaluations for historical (1990-2000) and future (2031-

2040) summer projections. In all cases, simulations were conducted using the parallel computing 

capabilities in tRIBS (Vivoni et al. 2011) on the Arizona State University Saguaro cluster for 

periods from June 1 to September 30 of each year. For the first activity, we compared three types 

of meteorological forcings in the Beaver Creek watershed: a ground-based rain gauge network 

(Gauge), a precipitation product from the Next Generation Radar (NEXRAD) system, and a 

reanalysis dataset from the North American Land Data Assimilation System (NLDAS). Fig. 3 

compares the total precipitation during each summer from the three sources. The Gauge product 

is obtained from 10 hourly rain gauges and includes an interpolation using Thiessen polygons. 

Large distances between rain gauges can result in a poor spatial representation of precipitation. 

To address this, we obtained hourly, 4 km resolution NEXRAD Stage IV precipitation 

observations which are corrected with ground-based rain gauges (see Grassotti et al. 2003, 
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Vivoni et al. 2006). Note from Fig. 3 that NEXRAD resolves finer details in the summer 

precipitation in the watershed. For simulations with Gauge and NEXRAD, hourly meteorological 

variables (pressure, wind speed, air temperature and relative humidity) were specified from the 

Verde and Mormon weather stations at low and high elevations in the watershed (shown in Fig. 

3). We evaluated NLDAS fields for all meteorological variables available at hourly, 12 km 

resolution (Mitchell et al. 2004), similar to the precipitation field shown in Fig. 3 for NLDAS. 

For this study, we used the raw NLDAS dataset without local corrections (e.g., Robles-Morua et 

al. 2012), to assess the capabilities of the native NLDAS product. Fig. 3 indicates that NLDAS 

generally captures the elevation gradient in meteorological forcing, but misses important details 

observed in the Gauge and NEXRAD products, as noted for other regions (e.g., Nan et al. 2010). 

For the second activity, we applied mesoscale atmospheric simulations from the WRF 

model (Shamarock et al. 2005) which provides dynamically-downscaled, hourly precipitation 

and meteorological fields at 10 km resolution in the historical and future periods. Wi et al. (2012) 

describe the downscaling approach with the HadCM3 model boundary conditions and provide 

descriptions of the model setup. A WRF downscaling simulation at a 35 km, 6 hour resolution 

over the coterminous U.S was first conducted and a second one-way downscaling step was 

performed to provide outputs at 10 km, 1 hour resolution over a more limited domain (28 – 37 

N, 105 – 116 W, Robles-Morua et al. 2011). As described by Wi et al. (2012), the downscaling 

approach utilized spectral nudging (Miguez-Macho et al. 2005) for the first step (35 km, 6 hr) to 

retain the synoptic-scale variability of the HadCM3 model. Dominguez et al. (2009) showed the 

HadCM3 model performed well in the southwest U.S. by capturing precipitation and temperature 

realistically. When averaged over the Beaver Creek watershed, the WRF simulations led to an 

underestimation of summer precipitation (June 1 to September 30) as compared to the NLDAS 
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product during 1990-2000, with a mean daily difference of 0.83 mm/day or an underestimate of 

101.7 ± 52.5 mm over the summers. Based on the analysis of Cavazos and Arriaga-Ramírez 

(2012), it is likely that the underestimation in the WRF product during the historical period is 

related to the boundary conditions specified by HadCM3, which for the region exhibit a 

precipitation shift from summer to autumn, relative to observed precipitation patterns. Since this 

negative bias is consistent with Castro et al. (2012) and Robles et al. (2015), we applied the WRF 

simulations to the distributed hydrologic model without a bias correction to inspect the changes 

arising natively between the historical and future periods (see a discussion of the disadvantages 

of bias correction of climate simulations in Ehret et al. 2012). Nevertheless, it is important to 

note the WRF simulations represent one model-specific projection from which meteorological 

variables were obtained based on a single GCM and single emissions scenario. The future period 

(2031-2040) selected for dynamical downscaling with WRF is a 10-year time slice representative 

as reproduced by the HadCM3 model under a high (A2) emissions scenario (Mearns et al. 2012). 

 

3. Results and Discussion 

3.1. Streamflow Simulations using Multiple Precipitation Products 

Depicting precipitation accurately from observations or simulations during the summer in 

the Beaver Creek watershed is challenging due to the complex terrain and the fine spatiotemporal 

scale of the storm systems (e.g., Baker 1982, Heinselman and Schultz 2006, Wall et al. 2012). As 

an example, Fig. 4 presents the spatial distribution of total precipitation for July 28, 2007, an 

event used within the model calibration exercise, for the three meteorological products. Note that 

the mean areal precipitation (MAP) is relatively low (< 25 mm) in all products, but some rain 

gauges and NEXRAD pixels recorded accumulations greater than 50 mm. Most precipitation 

occurred near the watershed outlet, downstream of the Wet and Dry Beaver Creek stream gauges 
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(Fig. 1), in both the Gauge and NEXRAD products, while NLDAS spatially smoothens the storm 

event. The streamflow response for the event is shown in Fig. 5 over the period of July 27 to 30, 

2007. As expected from the NEXRAD data, spatial variations occur in the observed streamflow, 

with a low response at Dry Beaver Creek (~2 m
3
/s in peak streamflow) and Wet Beaver Creek 

(~20 m
3
/s) and a larger event at the Beaver Creek outlet (~100 m

3
/s). Based on this evidence, 

NEXRAD data were used in the model calibration shown in Fig. 5 for all stream gauge sites. 

Overall, tRIBS simulates the observed streamflow well when using the NEXRAD data, including 

the variations in the peak streamflow among the stream gauges. A noticeable issue is the higher 

streamflow rates after the peak, in particular for the outlet. In contrast, simulations with Gauge 

and NLDAS products have more significant problems, such as delays and overestimations of the 

peak streamflow, which are symptomatic of the inaccuracies in the precipitation fields. Table 4 

summarizes the model performance for the calibration period using NEXRAD data as well as the 

impact of forcing the model with Gauge and NLDAS products on three performance metrics.  

Fig. 6 presents the simulated streamflow at the Beaver Creek stream gauges for the entire 

summer seasons during the calibration (2007) and validation (2005 and 2006) periods, presented 

as cumulative streamflow. These simulations correspond to the spatial precipitation patterns 

shown in Fig. 3 and are composed of individual storm events with varying spatiotemporal 

distributions. As noted for the single event in Fig. 5, NEXRAD produces the most accurate 

simulations with respect to the observed cumulative streamflow, in particular for the Wet and 

Dry Beaver Creek (see Table 4 for performance metrics for the three summer seasons and 

multiple forcing products). All simulations overestimate the observed streamflow at the Beaver 

Creek outlet, likely due to the lack of channel transmission losses in the tRIBS model (Ivanov et 

al. 2004), a process that is more important in the lower valleys with sedimentary fill. In general, 
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the use of Thiessen polygon interpolation of rain gauges leads to larger errors than NEXRAD or 

NLDAS, an indication of the value of gridded (4 or 12 km cells) precipitation products. Errors in 

the Gauge simulations are due to spatial interpolation issues since Hawkins (2012) found 

correlation coefficients between NEXRAD pixels and Gauge sites of ~0.8 in 2007. Furthermore, 

the gridded products provide a robust set of simulations across the three summers and their 

varied storm events at each stream gauge, suggesting the manual calibration and validation 

exercise yielded a model application to the Beaver Creek watershed suitable for analysis of 

summer conditions.  

 

3.2. Comparisons of Historical and Future Hydroclimatological Scenarios 

Assessing the impact of the climate change projection on the hydrologic response in the 

Beaver Creek watershed is performed first through an analysis of spatial averages for the 

historical (1990-2000) and future (2031-2040) periods. The spatial average considers eighteen 

WRF (10 km) model pixels within the watershed, an intermediate number between NEXRAD 

and NLDAS (see Fig. 3 as comparison). For clarity, all summer season simulations from June 1 

to September 30 (11 and 10 summers in the historical and future periods, respectively) are shown 

as daily averages and ± 1 standard deviations across all summers. Fig. 7 presents the spatially-

averaged air temperature and precipitation for the historical and future periods. It is clear that the 

future projection exhibits a higher temperature (by 1.2 ºC on average over the summer) and an 

earlier warming to maximum temperatures (i.e., in late June as opposed to early August). Nearly 

the same interannual variability is observed in the two periods and the decline of air temperature 

during the end of the summer is also similar when averaged over all summers. A more dramatic 

change is observed in the spatially-averaged precipitation in the watershed, with an earlier onset 

of the NAM season (~1 week) and a 2.4-fold increase in cumulative precipitation (i.e., from ~80 
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mm to ~190 mm for the average conditions in each period). In addition, the interannual spread in 

summer precipitation grows substantially for the future period (i.e., larger ± 1 standard 

deviations), indicating that the NAM might be susceptible more year-to-year variability.  

Translating the climate projections to the Beaver Creek watershed response is 

conditioned on the hydrologic processes simulated by the model. As noted earlier, differences in 

meteorological observations (Gauge, NEXRAD and NLDAS) can lead to substantial variations 

in the simulated streamflow at the stream gauge sites. As a result, we should expect that a 2.4-

fold increase in precipitation and a higher variability in the future period should significantly 

impact the watershed response. Fig. 8 presents the Beaver Creek outlet streamflow and spatially-

averaged evapotranspiration for the historical and future periods, shown as cumulative values. 

Clearly, the increase in summer precipitation and its variability translate directly to streamflow, 

with a higher (3.1-fold) increase and a significant rise in the interannual variability (a factor of 

5.1) from the historical to the future period. Nevertheless, the fraction of precipitation converted 

into streamflow (i.e., seasonal runoff ratio) remains similar in the two periods (~2%, Hawkins 

2012), consistent with other analyses in the NAM region (Gochis et al. 2006; Vivoni et al. 2010). 

Interestingly, the cumulative evapotranspiration exhibits a small decrease when averaged over 

each period, but a larger interannual variability is observed in the future period. This suggests 

that despite the projected increase in summertime temperature and precipitation, both factors that 

increase evapotranspiration, there appear to be similar spatially-averaged water losses to the 

atmosphere. This contradicts prior studies asserting that warmer temperatures lead to higher 

evapotranspiration amounts in the region (e.g., Weiss et al. 2009, Gutzler and Robbins 2011).  
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3.3. Understanding Hydroclimatological Mechanisms via Distributed Modeling 

To explore further the climate change projection, we utilized the distributed hydrologic 

model to investigate the hydroclimatological differences between the historical and future 

periods. Since each summer used the same initial depth to groundwater on June 1, the effect of 

the initialization of soil moisture should not significantly impact the differences among the 

periods. Note that the simulated summertime evapotranspiration amounts (Fig. 8) exceed the 

seasonal precipitation during the NAM (Fig. 7). This is explained by the consumption of soil 

moisture and groundwater carried over from the winter and spring seasons as represented via the 

initial groundwater state, as in Mahmood and Vivoni (2011). Thus, Hawkins (2012) showed high 

daily evapotranspiration of ~9 mm/day prior to the NAM (June), which stabilize to ~5 mm/day 

by the end of the NAM (September). During the NAM, spatially-averaged evapotranspiration is 

lower in the future period, despite warmer temperatures, suggesting that a limitation is present.  

To address this, Fig. 9 presents the spatial distribution of differences in precipitation, 

surface soil moisture, runoff and evapotranspiration between the historical and future periods. In 

each case, the spatial maps represent the time-averaged variable across each summer in each 

period and the difference is taken as the future minus the historical (i.e., positive differences 

imply a greater quantity in the future and vice-versa). Interestingly, precipitation increases are 

spatially organized with higher values (+130 to 150 mm, Fig. 9a) in the Mogollon Rim area with 

large elevation changes, consistent with observations (Fig. 3). This demonstrates the advantages 

of using a mesoscale model in that orographic effects on precipitation can be captured more 

realistically (e.g., Castro et al. 2012; Tripathi and Dominguez 2013). Relative soil moisture 

differences exhibit a small increase in the future period (+0.001 to 0.03, Fig. 9b) when time-

averaged over each summer, attributed to higher precipitation amounts. A notable feature is the 
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downstream increase in positive soil moisture differences due to horizontal connectivity in the 

model, overlaid on the effect of soil texture variations (Fig. 3). Downstream moistening suggests 

that locations near channel networks benefit hydrologically in the future period. Horizontal 

connectivity also impacts spatial runoff differences with some upland areas exhibiting a decrease 

in runoff in the future period (-0.01 to 0.9 mm, Fig. 9c), but the major spatial controls on runoff 

patterns are due to soil texture differences. Over most of the basin, runoff is projected to increase 

in the future period, with higher values (+0.3 to 1.7 mm) in areas with low conductivity clay 

soils and bedrock. Clearly, rich spatial patterns are observed in runoff differences as a 

superposition of precipitation changes and the underlying soil, terrain and land cover properties. 

Precipitation and soil moisture increases should lead to higher evapotranspiration due to 

the control of water availability on this process in a semiarid setting (e.g., Vivoni et al. 2008a). 

However, as noted previously, the spatially-averaged evapotranspiration does not appreciably 

change between the historical and future periods. Fig. 9d illustrates that the spatial pattern of 

evapotranspiration differences are complex, with a strong imprint of the precipitation distribution 

(i.e., 10 km WRF cells as in Fig. 9a). Notably, large decreases in evapotranspiration (-60 to 195 

mm) occur in pixels that receive larger precipitation from orographic forcing. This suggests that 

the limit on evapotranspiration is related to the spatial scale of storm events, captured by WRF at 

10 km resolution, and thus to the radiation limitation imposed by cloud cover in those pixels. 

This is captured in tRIBS by ingesting the 10 km, hourly resolution shortwave radiation incident 

on the land surface as simulated by WRF for each period. As evidence of this, the simulated 

daily-averaged shortwave radiation forcing decreases from the historical (347 ± 2.5 W/m
2
) to the 

future (341 ± 4.3 W/m
2
) periods. Nevertheless, there are some regions in Dry Beaver Creek with 

an increase in evapotranspiration (+0 to 35 mm) related to higher local water availability in 
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specific soil classes and a smaller effect of the cloud cover limitation. When spatially averaged 

over the Beaver Creek watershed, the evapotranspiration differences in the two periods are small 

as regions of positive and negative changes compensate for one another.  

 

4. Summary and Conclusions 

This study used a distributed hydrologic model to evaluate the hydrologic consequences 

of a climate change projection in the Beaver Creek watershed of central Arizona. Summer season 

simulations were driven with radar-based precipitation during the model calibration and 

validation exercise and evaluated using two alternative meteorological products at three stream 

gauge sites, yielding an adequate model performance. Based on the calibrated and validated 

model, the hydrologic response during summer seasons in a historical (1990-2000) and a future 

(2031-2040) projection were compared in terms of precipitation, soil moisture, runoff and 

evapotranspiration for spatially-averaged temporal variations and for time-averaged spatial 

patterns. Comparisons showed an increase in temperature, a large increase in precipitation 

amount and variability, and an amplified increase in streamflow amount and variability in the 

future period. However, relatively minor changes were obtained in the spatially-averaged 

evapotranspiration, though a larger interannual variability was observed. We explained the 

unexpected outcome related to evapotranspiration through the hydroclimatological mechanisms 

for each period, finding a compensating effect of higher cloud cover that limited radiation 

despite the higher summertime water availability in the future projection. This result challenges 

conventional wisdom on evapotranspiration trends resulting from climate change studies, which 

usually anticipate large future increases in evapotranspiration due to higher air temperatures 

(e.g., Weiss et al. 2009, Gutzler and Robbins 2011).  
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Prior studies have documented that higher evapotranspiration might not occur in semiarid 

regions if there is low water availability (Vivoni et al. 2009) or a stomatal control by vegetation 

(Serrat-Capdevila et al. 2011). In this work, we find that a radiation limitation can also control 

evapotranspiration due to higher cloud cover induced in a future climate projection with higher 

precipitation, in spite of more soil water and warmer temperatures. This suggests that climate 

change projections related to evapotranspiration need to be carefully analyzed with respect to the 

biotic and abiotic limits on the process, with warmer temperatures playing a role within a broader 

suite of conditions (i.e., radiation, water availability, vapor pressure deficit). In addition, the 

distributed hydrologic simulations performed here indicate that compensating effects can occur 

when complex spatial patterns of evapotranspiration are aggregated to an entire watershed. Both 

of these issues suggest that a more nuanced approach might be required when communicating the 

results of climate change projections to water managers in the arid and semiarid regions of the 

southwestern U.S. where the North American monsoon is an important seasonal phenomenon.  

This study is based on one climate change scenario over a short period in the near future 

(2031-2040) using the HadCM3 model boundary conditions, A2 emissions scenario and 

dynamical downscaling using WRF, thus limiting its generality with respect to all possible future 

climate projections for the region. Furthermore, the WRF downscaling of the HadCM3 model 

underestimated precipitation substantially during the historical period as compared to the 

NLDAS product, consistent with Castro et al. (2012) and Robles-Morua et al. (2015). Applying a 

bias correction derived in the historical period (i.e., based on comparisons to regional data) 

would likely lead to a much wetter future period, where the results of our analysis would still 

likely hold. Other combinations of GCM boundary conditions, dynamical downscaling 

techniques and emissions scenarios (e.g., Mearns et al. 2012; Bukovsky et al. 2013) will yield 
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differing impacts on summer precipitation that ultimately would produce varying hydrologic 

responses. For cases with a reduction in summer precipitation, we might expect lower soil 

moisture and streamflow, while evapotranspiration changes would depend upon the level of 

water stress present in the region rather than on cloud cover effects.  

Despite the limitation of a single realization, the approach taken here demonstrates a 

more realistic use of a climate change projection in a watershed simulation, due to the improved 

spatial representation of orographic precipitation and its influence on radiation through cloud 

cover. The distributed hydrologic model also allows a detailed spatiotemporal representation of 

the effects of a climate change projection to be translated into hydrologic conditions of interest to 

downstream water managers in Phoenix, Arizona. As a result, this study provides a foundation 

upon which to build future modeling activities that test a wider range of climate or land use 

change projections on water resources that can support decision-making under uncertainty (e.g., 

Gober et al. 2010, White et al. 2010). Clearly, hydrologic vulnerabilities emanating from climate 

change projections might be considered contrary to conventional wisdom and this needs to be 

properly communicated to stakeholders and decision-makers with interests in a region. 
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Figure Captions 

Fig. 1. Beaver Creek watershed location within the Verde River in central Arizona (inset). 

Watershed representation through a 30 m Digital Elevation Model (DEM) and the locations of 

stream gauges, rain gauges and sub-watershed boundaries (Wet and Dry Beaver Creek). 

 

Fig. 2. Spatial distributions of soil texture classes (A), land cover classes (B) and initial depth to 

the groundwater table (C). 

 

Fig. 3. Spatial distribution of total precipitation for three summer periods from Gauge, NEXRAD 

(4 km) and NLDAS (12 km) products over Beaver Creek (with watershed boundary shown). 

 

Fig. 4. Spatial distribution of total event precipitation on July 28, 2007 from Gauge, NEXRAD 

and NLDAS products, with the watershed boundary and mean areal precipitation (MAP) shown. 

 

Fig. 5. Simulated and observed streamflow at the three stream gauges (July 27 to 30, 2007) from 

Gauge, NEXRAD and NLDAS products with the spatially-averaged precipitation shown.  

 

Fig. 6. Simulated and observed cumulative streamflow (June 1 to September 30) for the three 

summer periods at the three stream gauges from the Gauge, NEXRAD and NLDAS products. 

 

Fig. 7. Historical and future summertime climate projections spatially-averaged in the Beaver 

Creek of air temperature (A, B) and cumulative precipitation (C, D) averaged over each period 

(solid lines) and with interannual variability (±1 standard deviation shown as bars or shading). 

 

Fig. 8. Historical and future summertime climate projections spatially-averaged in the Beaver 

Creek of cumulative outlet streamflow (A, B) and cumulative evapotranspiration (C, D) averaged 

over each period (solid lines) and with interannual variability (±1 standard deviation, shading). 
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Fig. 9. Spatial variation of climate projection differences (average future period minus average 

historical period) in the Beaver Creek watershed for precipitation (A), relative soil moisture 

which is normalized by porosity (B), runoff (C) and evapotranspiration (D). Units are shown as a 

difference in mm and valid over an entire summer season (June 1 to September 30). 
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Fig. 1. Beaver Creek watershed location within the Verde River in central Arizona (inset). 

Watershed representation through a 30 m Digital Elevation Model (DEM) and the locations of 

stream gauges, rain gauges and sub-watershed boundaries (Wet and Dry Beaver Creek). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 (Hawkins et al. 2015) 
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Fig. 2. Spatial distributions of soil texture classes (A), land cover classes (B) and initial depth to 

the groundwater table (C). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 (Hawkins et al. 2015) 
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Fig. 3. Spatial distribution of total precipitation for three summer periods from Gauge, NEXRAD 

(4 km) and NLDAS (12 km) products over Beaver Creek (with watershed boundary shown). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 (Hawkins et al. 2015) 
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Fig. 4. Spatial distribution of total event precipitation on July 28, 2007 from Gauge, NEXRAD 

and NLDAS products, with the watershed boundary and mean areal precipitation (MAP) shown.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 (Hawkins et al. 2015) 
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Fig. 5. Simulated and observed streamflow (July 27 to 30, 2007) at the three stream gauges from 

the Gauge, NEXRAD and NLDAS products with the spatially-averaged precipitation shown.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 (Hawkins et al. 2015) 
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Fig. 6. Simulated and observed cumulative streamflow (June 1 to September 30) for the three 

summer periods at the three stream gauges from the Gauge, NEXRAD and NLDAS products.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6 (Hawkins et al. 2015) 
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Fig. 7. Historical and future summertime climate projections spatially-averaged in the Beaver 

Creek of air temperature (A, B) and cumulative precipitation (C, D) averaged over each period 

(solid lines) and with interannual variability (±1 standard deviation shown as bars or shading).  

 

 

 

 

Fig. 7 (Hawkins et al. 2015) 



37 

 

 
 

 

 

 

Fig. 8. Historical and future summertime climate projections spatially-averaged in the Beaver 

Creek of cumulative outlet streamflow (A, B) and cumulative evapotranspiration (C, D) averaged 

over each period (solid lines) and with interannual variability (±1 standard deviation, shading). 

 

 

 

 

Fig. 8 (Hawkins et al. 2015) 
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Fig. 9. Spatial variation of climate projection differences (average future period minus average 

historical period) in the Beaver Creek watershed for precipitation (A), relative soil moisture 

which is normalized by porosity (B), runoff (C) and evapotranspiration (D). Units are shown as a 

difference in mm and valid over an entire summer season (June 1 to September 30).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9 (Hawkins et al. 2015) 



39 

 

Table Captions 

Table 1. Watershed areal coverage for soil and land cover classifications. 

 

Table 2. Hydrologic components of the tRIBS model. 

 

Table 3. Model parameters for the major soil and land cover classes. Definitions are detailed by 

Ivanov et al. (2004): Ks is the saturated hydraulic conductivity, θs and θs are the soil moisture 

contents at saturation and residual values, m is the pore size distribution index, Ψb is the air entry 

bubbling pressure, f is the hydraulic conductivity decay parameter, As and Au are the saturated 

and unsaturated anisotropy ratios, n is soil porosity, ks and Cs are the soil heat conductivity and 

heat capacity, p is the free throughfall coefficient, S is the canopy storage capacity, K and g are 

the drainage coefficient and exponential parameters, a is albedo, h is vegetation height, kt is the 

optical transmission coefficient, rs is the stomatal resistance and vf is the vegetation fraction.  

 

Table 4. Model performance metrics for flood event in 2007 (Fig. 5) and entire summer seasons 

in 2005, 2006 and 2007 (Fig. 6) at the three stream gauges, labeled as BCO (Beaver Creek 

Outlet, in plain text), WBC (Wet Beaver Creek, in italics) and DBC (Dry Beaver Creek, in bold). 

Metrics follow definitions in Vivoni et al. (2006). CC is the correlation coefficient 

(dimensionless, -), B is the bias (dimensionless, -), and MAE is the mean absolute error (m
3
/s). 
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Soil Class Coverage  Land Cover Class Coverage 

 (%)   (%) 

     

Bedrock 18.58  Desert 1.38 

Clay 28.24  Desert Grassland 0.35 

Clay loam 19.22  Desert Riparian 5.01 

Loam 14.35  Desert Shrub 28.37 

Loamy Sand 0.09  General Development 3.53 

Sand 0.91  Pinyon-Juniper 27.57 

Sandy Loam 6.73  Ponderosa Pine 33.73 

Silt Loam 11.41  Water 0.06 

Silty Clay Loam  0.41    
Water 0.06    

     

 

 

 

 

Table 1. Watershed areal coverage for soil and land cover classifications. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 (Hawkins et al. 2015) 
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Model Process Description  

   

   

Rainfall interception Rutter canopy water balance model  

Surface energy balance Penman-Monteith equation, gradient method and force-restore equation  

Surface radiation model Shortwave and longwave components accounting for terrain variability  

Evapotranspiration Bare soil evaporation, transpiration and evaporation from wet canopy  

Infiltration 
Kinematic approximation with capillarity effects; single infiltration 

wave with top and wetting fronts 
 

Lateral moisture flow Topography-driven lateral unsaturated and saturated zone flow  

Runoff production 
Infiltration-excess, saturation-excess, perched subsurface stormflow, 

groundwater exfiltration 
 

Groundwater flow Two-dimensional flow in multiple directions, dynamic water table  

Overland flow  Nonlinear hydrologic routing  

Channel flow Kinematic wave hydraulic routing  

   

 

 

 

 

Table 2. Hydrologic components of the tRIBS model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 (Hawkins et al. 2015) 
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Parameter 

(Unit) 

Soil parameters 

Parameter 

(Unit) 

Land cover parameters 

Wet Beaver Creek  Dry Beaver Creek    

Bedrock  Clay 
Clay 

Loam  
 Bedrock  Clay 

Clay 

Loam  

Desert 

Shrub 

Pinyon-

Juniper 

Ponderosa 

Pine 

            

Ks (mm/hr) 1.0 3.0 14.3  1.0 3.0 14.3 p (-) 0.85 0.70 0.50 

θs (-) 0.40 0.40 0.39  0.39 0.39 0.39 S (mm) 1.0 1.0 1.5 

θr (-) 0.10 0.10 0.08  0.09 0.09 0.08 K (mm/hr) 0.10 0.10 0.12 

m (-) 0.20 0.20 0.24  0.16 0.16 0.24 g (mm
-1

) 4.0 4.0 3.5 

Ψb (mm) -37 -37 -56  -37 -37 -56 a (-) 0.20 0.18 0.17 

f (mm
-1

) 0.0010 0.0050 0.0010  0.0010 0.0001 0.0010 h (m) 1 2 10 

As (-) 200 200 200  200 200 200 kt (-) 0.6 0.5 0.3 

Au (-) 300 300 300  300 300 300 rs (s/m) 150 150 175 

n (-) 0.48 0.48 0.47  0.48 0.48 0.47 vf (-) 0.2 0.5 0.8 

ks (J/msK) 0.7 0.7 0.7  0.7 0.7 0.7     

Cs (J/m
3
K) 1.4x10

6
 14.x10

6
 1.4x10

6
  1.4x10

6
 14.x10

6
 1.4x10

6
     

            

 

 

 

 

Table 3. Model parameters for the major soil and land cover classes. Definitions are detailed by 

Ivanov et al. (2004): Ks is the saturated hydraulic conductivity, θs and θs are the soil moisture 

contents at saturation and residual values, m is the pore size distribution index, Ψb is the air entry 

bubbling pressure, f is the hydraulic conductivity decay parameter, As and Au are the saturated 

and unsaturated anisotropy ratios, n is soil porosity, ks and Cs are the soil heat conductivity and 

heat capacity, p is the free throughfall coefficient, S is the canopy storage capacity, K and g are 

the drainage coefficient and exponential parameters, a is albedo, h is vegetation height, kt is the 

optical transmission coefficient, rs is the stomatal resistance and vf is the vegetation fraction.  
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 Metric 

 CC (-) 

BCO, WBC, DBC 

MAE (m
3
/s) 

BCO, WBC, DBC 

B (-) 

BCO, WBC, DBC 

    

2007 Flood Event    

Gauge 0.73, 0.78, 0.43 16.34, 7.72, 1.49 6.11, 8.69, 15.91 

NEXRAD 0.66, 0.74, 0.57 11.74, 2.09, 0.39 4.60, 2.94, 4.77 

NLDAS 0.11, 0.60, 0.43 13.00, 2.88, 3.01 4.08, 3.56, 30.66 

    

2005 Summer Season    

Gauge 0.66, 0.26, 0.26 1.15, 0.50, 0.26 3.99, 1.62, 1.34 

NEXRAD 0.64, 0.48, 0.67 0.92, 0.34, 0.23 3.25, 0.99, 1.41 

NLDAS 0.16, 0.17, 0.06 0.56, 0.31, 0.21 1.45, 0.55, 0.48 

    

2006 Summer Season    

Gauge 0.46, 0.08, 0.77 2.51, 0.81, 0.39 10.08, 4.31, 1.53 

NEXRAD 0.67, 0.17, 0.59 0.65, 0.23, 0.26 3.00, 1.08, 0.93 

NLDAS 0.48, 0.02, 0.20 0.46, 0.24, 0.25 1.91, 0.79, 0.29 

    

2007 Summer Season    

Gauge 0.54, 0.52, 0.11 1.68, 0.67, 0.31 8.75, 2.81, 13.22 

NEXRAD 0.64, 0.52, 0.08 0.91, 0.29, 0.10 5.10, 1.08, 3.86 

NLDAS 0.24, 0.41, 0.10 0.74, 0.35, 0.15 3.85, 1.20, 6.03 

    

 

 

 

 

Table 4. Model performance metrics for flood event in 2007 (Fig. 5) and entire summer seasons 

in 2005, 2006 and 2007 (Fig. 6) at the three stream gauges, labeled as BCO (Beaver Creek 

Outlet, in plain text), WBC (Wet Beaver Creek, in italics) and DBC (Dry Beaver Creek, in bold). 

Metrics follow definitions in Vivoni et al. (2006). CC is the correlation coefficient 

(dimensionless, -), B is the bias (dimensionless, -), and MAE is the mean absolute error (m
3
/s). 
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