
43Biomarker Insights 2015:10(S1)

Introduction: Traumatic Brain Injury
Within the United States, approximately 5.3 million individuals  
are affected by traumatic brain injury (TBI) annually,1–3 
and 43% of TBI survivors report having sustained disabili-
ties 1 year after injury.4 The incidence of TBI has been on 
the rise in recent years, with wars in Iraq and Afghanistan  
significantly contributing to their increased numbers.2,5 As 
such, TBI accounts for an estimated $76.5 billion strain on 
US healthcare and economy each year.6 Given the societal and 
financial expense, coupled with its increase in incidence, TBI 
represents a substantial public heath concern that has gar-
nered public attention in recent years. This review will briefly 
touch on the general pathophysiological signaling after brain 
injury, and then specifically focus on injury-induced signaling, 
its relationship to endogenous regenerative efforts, and how 
bioengineering approaches may exploit the inherent signaling 
to better facilitate repair and regeneration after TBI.

Pathophysiology after TBI is dependent on several 
parameters related to how the injury was sustained (ie, focal 
vs diffuse, mild vs severe), leading to variability among injury 
phenotypes. However, the pathological progression of all 
injuries typically encompasses a primary injury due to an ini-
tial mechanical insult and a secondary injury that is a result 
of self-propagating cascades at the cellular and subcellular 
levels.7,8 Primary injuries often lead immediately to contusion, 

laceration, and intracranial hemorrhaging at the tissue level 
and substantial neuronal death (by necrosis) at the cellular 
level.5,9 The hemorrhaging and swelling induced during the 
primary injury contribute to increases in intracranial pressure 
and subsequently to limited cerebral blood flow, thus creating 
an ischemic injury microenvironment.5,10,11

Concomitant to ischemic injury, there is a significant cel-
lular influx of Ca2+, Na+, and K+ ions,11,12 where Ca2+ influx 
is thought to be primarily responsible for activation of reac-
tive astrocytes in brain injury.13 Activated astrocytes, together 
with activated resident microglial cells and infiltrating sys-
temic leukocytes and macrophages, mediate neuroinflam-
mation following TBI.14–16 An understanding of how these 
cells mediate the mounted inflammatory response is critical 
to effectively develop intervention therapies for TBI. In rela-
tion to neural regenerative efforts, understanding how injury- 
induced inflammatory signaling directly or indirectly influ-
ences endogenous repair efforts (ie, adult neural stem cell 
recruitment) at various temporal and spatial points through-
out the injury response is a first step toward developing effec-
tive bioengineering approaches targeting neural regeneration 
for TBI treatment. This review will detail the relevant physio
logical components of the injury-induced signaling milieu, 
including neuroinflammatory mediators, and how these factors 
play direct or indirect roles in the modulation of endogenous 
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neural stem recruitment. The second half of this review will 
explore two main bioengineering approaches aimed at further 
amplifying/modulating the inherent signals to tip the scales to 
further promote regeneration as opposed to degeneration. This 
review admittedly focuses on extracellularly present factors 
and cytokines that have been linked directly or indirectly to 
neural progenitor/stem cell behavior. For a more thorough 
and detailed overview of the pathophysiology of TBI and 
neuroinflammation, readers are encouraged to refer to other 
reviews.17,18

Endogenous Repair Response to Neural Injury and 
Its Mediating Factors
The capacity for endogenous repair within the adult central 
nervous system (CNS) has only recently been realized through 
discoveries of neurogenesis concentrated within regions iden-
tified as neural niches – the subgranular zone (SGZ), which 
lines the dentate gyrus within the hippocampus, and the sub-
ventricular zone (SVZ), which lines the lateral ventricle.19–23 
While alterations in both the SGZ and SVZ progenitor 
populations have been reported after TBI, this review largely 
focuses on the SVZ neural niche to highlight the effects of 
injury-induced signaling on adult neural progenitor/stem cell 
(NPSCs) populations.

The subventricular zone. The SVZ is closely approxi-
mated with vasculature,24–26 where a single cell (type B cells) 
spans its width, extending processes to contact vasculature on 
one side and the lateral ventricle on the other.26,27 Type B cells 
thus have access to both ventricular and vascular signaling, 
which is critical to niche maintenance.23,27 Neural stem cell 
phenotype is thought to be more effectively maintained in 
close proximity to endothelial cells, and proliferation within 
the SVZ arises within 10–15 µm away from blood vessels.25,28 
Proliferation within the SVZ is typically observed in type C 
cells, the highly proliferative transit-amplifying cells that arise 
from type B cells and in turn will give rise to type A cells.10,29 
Type A cells are GFAP+ neuroblasts or NPSCs that exit the 
niche by migrating along the nearby vasculature. Under nor-
mal physiological conditions, migration occurs along the ros-
tral migratory stream to the olfactory bulb where they become 
interneurons.30 However, following injury, the fate of cells 
derived from the SVZ is altered.

NPSC response to neural injury. Injury-induced 
changes within the niche. Evidence suggests that the cells of 
the SVZ undergo proliferative and phenotypic changes fol-
lowing a neural injury, as the SVZ niche has been shown to 
increase in size, the total number of cells, and the number 
of proliferative cells.31–34 It is thought that the type C cells 
are largely responsible for increased proliferation within 
the niche after injury.33,35 However, Thomsen et  al have 
recently proposed a nonproliferative mechanism by which 
the SVZ increases in size and total cell number in which 
injury-induced phenotypic subsets of SVZ cells dedifferen-
tiate.33 While findings of increased cell number and SVZ 

thickness after injury have been robust across the field, these 
injury-induced changes within the niche are complex, and 
there is still much about niche dynamics after injury that 
has yet to be understood.

NPSC recruitment to site of injury. Neural injury affects 
not only NPSCs within the niche but also those leaving the 
niche. Following injury, NPSCs stray from their normal 
physiological migratory route and home to the site of injury in 
a vasophilic manner.31,34,36–39 While the signals driving this 
behavioral change are still being investigated, it is thought to 
be driven by chemokines and inflammatory factors secreted by 
activated cell types in the injury microenvironment.

Injury-induced factors that mediate the endogenous 
repair response. The active cell types of neural injury create a 
complex microenvironment through the secretion of a myriad 
of signaling factors that can facilitate and/or mitigate the injury 
progression (Fig. 1). These factors range from proinflamma-
tory to neurotrophic in nature, and it is important to note that 
there is much interplay between signaling molecules, which 
further complicates their respective roles within the injury 
sequelae. The cell source and temporal and spatial expression 
patterns (Figs. 2 and 3) help to inform the nature of each sig-
naling molecule’s roles, specifically in mediating the behavior 
of endogenous NPSCs after injury (see Table 1 for breakdown 
of specific molecules and their effect on NPSCs). For the pur-
pose of this review, several extracellular factors and cytokines 
that have been found to affect NPSCs were selected for discus-
sion; however, numerous factors not discussed here, including 
critical transcription factors, can directly or indirectly affect 
NPSC behavior and it is important to acknowledge their effect 
on endogenous behaviors as well. For a more thorough review 
of signaling factors not described here, interested readers are 
encouraged to refer to recommended reviews.40–42

Stromal cell-derived factor 1α (SDF-1α). Increased expres-
sion of the chemokine SDF-1α has been observed within the 
injury penumbra within 24 hours after neural injury and per-
sists out to 3 days before decreasing.43,44 Both in vitro and in 
vivo data indicate that local increases in SDF-1α after neural 
injury are generated by reactive astrocytes within the surround-
ing tissue.45–47 Unpublished data from our lab also indicate 
that SDF-1α protein levels peak within the injury penumbra 
following the controlled cortical impact (CCI) model for TBI 
at 1 and 3 days, with a decrease at 7 days and a return to base-
line at 14 days.

There is compelling evidence that the chemokine SDF-1α 
plays a critical role in recruiting endogenous NPSCs to the 
site of injury in that the local SDF-1α source within the injury 
microenvironment is thought to be chemottractive to NPSCs 
leaving the niche.44,46 NPSCs’ chemotactic response to SDF-1α 
has been well characterized in vitro48–50 and has been shown  
to work synergistically with the vascular basement membrane 
protein laminin to increase NPSC migration,48 implicating 
its relevance to vasophilic mechanisms of endogenous NPSC 
recruitment after injury. Moreover, blocking the activity of the 

http://www.la-press.com
http://www.la-press.com/journal-biomarker-insights-j4


Endogenous signaling and regenerative bioengineering approaches for brain injury

45Biomarker Insights 2015:10(S1)

Endothelial cells
Activated microglia Activated astrocytes

BBB breakdown

Inflammatory cells

VEGF
FGF

EGF
FGF

SDF-1
VEGF

Neural progenitor/stem cells (NPSCs)
migrate, differentiate, and proliferate

IL-1
TNF

IL-1
TNF

IL-6IL-6
TGFEGF

FGF
VEGF BDNF

TNF
IL-6
TGF

Immediate neuronal death,
axonal dysfuntion,
and hypertension

Primary injury

+ +/− +/− +/−

Figure 1. Schematic depicting the active cell types and their role in the pathophysiology of TBI.
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Figure 2. Temporal and spatial pro-regenerative signaling patterns following TBI. (A) Within the injury penumbra, expression increases for SDF-1a, VEGF, 
EGF, FGF, and BDNF in unique temporal patterns. (B) Expression of EGF and BDNF has also been observed to increase in the hippocampus after injury.

SDF-1α receptor CXCR4 attenuated the migration of NPSCs 
to the injury environment following a stroke.51

SDF-1α may also play a role in increased NPSC pro
liferation observed within the SVZ niche after injury, as 
in vitro studies have shown that SDF-1α promotes NPSC 
proliferation.48,50 However, this relationship has yet to be fully 
elucidated within the context of TBI.

Vascular endothelial growth factor (VEGF). Increased 
expression of VEGF has been observed in several models of 
TBI. Much like SDF-1α, VEGF secretion is associated with 
reactive astrocytes and endothelial cells within the injury 
penumbra; however, infiltrating inflammatory cell types also 
contribute significantly to early elevated VEGF levels.52–56 
Neutrophil-derived VEGF is elevated within four hours after 

injury and persists out to 2 days.52,53 At approximately 1 day 
after injury, endothelial cells begin to contribute significantly 
to elevated VEGF levels within the injury penumbra, and 
their contribution persists out to 5 days after injury.52 Between 
3 and 7 days after injury, reactive astrocytes appear to secrete 
VEGF within the penumbra,52,54–56 coinciding with mac-
rophage VEGF secretion, which peaks from 4–6 days after 
injury.52,54

VEGF may be chemottractive to NPSCs after injury 
through both direct and indirect mechanisms. In vitro, VEGF 
has been shown to increase NPSC migration after direct 
stimulation57 and to promote NPSC migration indirectly 
through endothelial cells and/or other growth factors.58,59 
The concept of indirect VEGF NPSC stimulation further 
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underlines the importance of the niche’s close proximity to 
vasculature. Moreover, VEGF overexpression in transgenic 
mice has shown to increase NPSC recruitment to ischemic 
areas after a stroke.60

Much like SDF-1α, VEGF may also contribute to NPSC 
proliferation within the SVZ after injury. In vitro, both direct 
and indirect evidence of VEGF-mediated NPSC prolifera-
tion have been observed,61,62 and Wang et al found SVZ pro-
liferation after a stroke to increase in VEGF-overexpressing 
transgenic mice.60 VEGF may not only promote proliferation 
but may also reduce apoptosis in NPSCs, thus contributing to 
increased SVZ size and survival after neural injury, as reduced 
NPSC apoptosis following a stroke within neurogenic regions 
(ie, SVZ, dentate gyrus, rostral migratory stream, olfactory 
bulb) was observed by Schänzer et al after VEGF intraven-
tricular perfusions.62

Epidermal growth factor (EGF). Increases in EGF after 
neural injury are relatively short-lived, peaking within the 
first 24  hours in the injury penumbra, CA3, and dentate 
gyrus regions and returning to baseline levels by 3 days.43,63  
A more sustained EGF increase is observed in the hippocampus 
(CA1 region), increasing from 24 hours to 3 days and return-
ing to basal levels by 7 days.63 Early increases in EGF have 
been attributed to neuronal upregulation, while the sustained 
response in the CA1 past 24  hours has been attributed to 
glial cells.63

It is important to point out that, given the proliferative 
response to injury within the SVZ and the known mitogenic 
effects of EGF on NPSCs,64,65 one might anticipate increases 
in EGF expression to spatially coincide with this prolifera-
tive zone. However, it has been proposed that rather than an 
increased level of EGF, TBI induces increased sensitivity of 
endogenous cell types to EGF signaling by upregulating its 
receptor, EGFR.35,66 These data paint a complex picture when 
taken together with those of Thomsen et al, which describe a 
new lineage of EGFR+ neural stem cells that appear to arise 
from dedifferentiating neuroblasts after TBI.51 Regardless of the 
mechanism by which NPSCs respond to EGF after an injury, 
studies in EGF knock-out mice have illustrated that EGF plays 
a critical role in promoting proliferation within the SVZ and in 
mitigating apoptosis within the SVZ and injury penumbra.67

Fibroblast growth factor (FGF). Increases in FGF have 
been shown to occur as early as four hours after injury and 

persist for 14 days following TBI in several models; however, 
increased FGF expression remains spatially restricted to 
the injury region.68–72 Early upregulation of FGF is due 
to macrophages and microglia (four hours to 3  days), while 
late FGF upregulation originates from reactive astrocytes 
(7–14 days), alluding to its potential to play multiple critical 
roles during the endogenous repair response.69,72

Much like EGF, FGF is a well-characterized mitogen 
in vitro, where EGF and FGF are often used in combination 
to maintain NPSCs in culture.65,73 Increased FGF follow-
ing an ischemic insult has been observed to increase hip-
pocampal NPSC proliferation in vitro, and this effect was 
attenuated in FGF knock-out mice in vivo.74 Moreover, 
NPSC proliferation following injury was reduced to basal 
levels upon inhibition of FGF, indicating that even in the 
presence of other injury-relevant signaling molecules, FGF 
appears to play a critical role in regulating injury-induced 
NPSC proliferation.75 In the same study, injury-conditioned 
media increased NPSC neuronal differentiation; however, 
FGF inhibition was not observed to significantly reduce 
neuronal differentiation,75 suggesting that there are other 
factors that contribute to neuronal differentiation following 
injury. Nonetheless, FGF is not completely inactive in medi-
ating neuronal differentiation, as studies have demonstrated 
its role in neurogenesis.11,21

Brain-derived neurotrophic factor (BDNF). While there 
is evidence in ischemic injury models of BDNF upregula-
tion within the injury penumbra, increased BDNF within the 
injury region has not yet been observed in TBI models.43,76,77 
Following stroke, BDNF in the hypoxic core increased by two 
hours and remained elevated out to 3 days.76,78 However, fol-
lowing a fluid percussion model of TBI, BDNF showed no 
significant increase within acute time points after injury.77 The 
most robust increases in BDNF after TBI have instead been 
observed in the dentate gyrus and the CA3 regions of the hip-
pocampus.16,79,80 Hicks et al observed an ipsilateral increase in 
BDNF within the hippocampus 3–6 hours following a mild 
fluid percussion injury model (FPI) and found this trend to 
extend bilaterally after severe FPI in which BDNF increased 
at 1 hour and was sustained out to 72 hours.79 While stud-
ies have been in agreement regarding hippocampal BDNF 
expression, increases within the injury penumbra appear to 
be largely dependent on the injury model, with more severe 
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Figure 3. Temporal and spatial inflammatory cytokine signaling patterns following TBI. (A) TNF expression increases for 1 week after injury in the injury 
penumbra, while (B, C) IL-6 expression has been shown to increase in the hippocampus and blood for 1 week after injury. (A–C) A more acute increase in 
expression has been observed for IL-1b in the injury penumbra, hippocampus, and blood.
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models more likely to elicit a cortical BDNF response.77,81 
Regardless of location, BDNF appears to originate from gran-
ule cells and activated microglia.77,80,81

BDNF plays a critical role in mediating both the 
differentiation and survival of new neurons. Several studies 
in vitro have demonstrated that BDNF both suppresses the 
proliferation of undifferentiated NPSCs and promotes the 
neuronal differentiation of NPSCs.82–85 Moreover, BDNF 
has been shown to promote the survival of new neurons,86–88  
a critical characteristic in the context of TBI in which endog-
enous NPSCs face a complex injury microenvironment upon 
recruitment to the lesion. Gao et  al convincingly elucidated 
this critical role for BDNF after TBI using BDNF conditional 
knock-out mice in which the death of new neurons within the 
dentate gyrus was significantly increased compared to wild-
type mice after injury.87

Interleukin-1β (IL-1β). A number of studies have recorded 
a significant increase in both IL-1β mRNA and protein in the 
injury site, penumbral region, and cerebrospinal fluid (CSF) 
within 15  minutes post injury in various TBI models.89–92 
IL-1β reportedly reaches maximum concentrations as early 
as 3–8 hours in CCI and moderate FPI,90,91,93 and as late as 
48  hours in an FPI model.94 Regardless of the injury type, 
IL-1β is primarily secreted by activated astrocytes, mac-
rophages, lymphocytes, and neutrophils.95,96

Both IL-1β and its receptor (IL-1R1) are expressed by 
NPSCs in the dentate gyrus of the hippocampus97–99; how-
ever, IL-1R1 has not been detected in progenitor cells derived 
from the SVZ.100 In a murine model of acute stress, exogenous 
IL-1β decreased hippocampal cell proliferation in the SGZ; 
however, IL-1β had no effect on NPSC proliferation in the 
SVZ,97 indicating interactions between IL-1β and NPSCs of 
the SGZ, but not the SVZ (ie, IL-1β may regiospecifically 
mediate NPSC proliferation). Additionally, both in vitro and 
in vivo experiments found that IL-1β inhibited the prolifera-
tion of NPSCs in a dose-dependent manner.101 In a recent in 
vitro study, IL-1β was shown to directly inhibit rat hippocam-
pal NPSC proliferation and neurosphere growth.102 These 
data provide evidence for a direct, largely negative, and regio-
specific effect of IL-1β on NPSC proliferation.

Tissue necrosis factor-α (TNF-α). Preclinical CCI and 
traumatic lesion models of TNF-α release have recorded mea-
surable concentrations as early as 1  hour post injury, peak-
ing at 2–4 hours, and declining thereafter.91,103,104 Other CCI 
models measured cerebral lysate and CSF concentrations of 
TNF-α to increase from 3 to 6 hours post injury and peak at 
24 hours.104,105 TNF-α is generally localized near the injury 
penumbral regions,92,106 although global TNF-α mRNA 
increase four hours after moderate and severe TBI has also 
been reported.107 Regardless of injury type, TNF-α produc-
tion primarily stems from activated microglia, astrocytes, and 
T cells.108

TNF-α signals via two distinct receptors: TNF-α recep-
tor 1 (TNFR1), which is responsible for the pro-inflammatory Ta
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and pro-apoptotic functions of TNF-α; and TNF-α receptor 2 
(TNFR2), which activates pro-growth and survival pathways 
as well.109–111 Although the function of each receptor is well 
understood, the major functions of TNF-α in the brain has 
remained elusive, with groups recording conflicting informa-
tion with respect to its effect on NPSC proliferation and differ-
entiation. An in vitro study using adult SVZ NPSCs showed 
that TNF-α activated proliferation and inhibited differentia-
tion.112 Conversely, in a separate in vitro study using NPSCs 
derived from the striatum, TNF-α was shown to induce 
migration and inhibit NPSC proliferation, but had no effect on 
differentiation.100 This inconsistency could be due to variation 
in cell type, concentration, or time of TNF-α treatment, or to 
the differential expression of TNFR1 and TNFR2. TNF-α 
may be an important factor in inflammation-induced death of 
NPSCs in the adult brain after an insult. In a model using LPS-
activated microglial cells, TNF-α was found to significantly 
exacerbate hippocampal progenitor cell death.113 However, 
dose-dependent effects of TNF-α on NPSC death and behav-
ior have also been observed.111 Experiments performed with 
murine organotypic hippocampal slice cultures demonstrated 
either apoptosis at high concentrations or neuroprotection at  
low concentrations of TNF-α.111 These findings were later 
corroborated in a murine neonatal SVZ stem cell model, 
with low concentrations stimulating NPSC prolifera-
tion and differentiation.111 These data provide the context 
to hypothesize that the function of TNF-α in general is 
dependent not only on the region in which it is acting (likely 
via specific TNFR binding) but also on the local concentra-
tion of TNF-α.

Interleukin-6 (IL-6). The temporal distribution of IL-6 
after brain injury varies for both mRNA and protein depend-
ing on the brain region and model. For example, using the 
diffuse FPI model, IL-6 mRNA expression in the whole brain 
was increased after 4 hours,107 while IL-6 mRNA expression 
in the hippocampus increased after 48  hours post injury in 
the CCI model.114 Other studies found measurable levels of 
IL-6 protein in the first 2–4 hours post injury, which peaked 
at 8  hours (FPI, CCI, closed head injury model).91,103 IL-6 
also remained elevated in the impact region, CSF, and blood 
samples from 24 hours to 7 days post injury in multiple brain 
injury models.90–92,94,103 In spite of the complex nature of IL-6 
expression in TBI, this cytokine is primarily expressed by 
microglia, astrocytes, and T cells.115 Together, this informa-
tion implies a complex role for IL-6 in both chronic and acute 
TBI in various regions of the brain.

Although IL-6 has been largely classified as a pro- 
inflammatory cytokine, IL-6 has been associated with neuro-
protection with respect to TBI,15,116 as raised levels of IL-6 in 
the CSF post TBI have been correlated with improved out-
come.117 Nonetheless, current theory holds that acute exposure 
to IL-6 is detrimental for NPSC survival in the SGZ118–120 
and beneficial in the SVZ.121 In general, these studies pro-
vide evidence of a complex role for IL-6 in the inflammatory 

milieu, which is highly dependent on the region, concentra-
tion, and cell type on which IL-6 is acting.

Other critical cytokines: Interleukin-10 (IL-10) and trans-
forming growth factor-β (TGF-β). In the acute injury phase, 
T cells, macrophages, and monocytes also secrete IL-10, an 
anti-inflammatory cytokine associated with better outcome 
after brain trauma.122–124 In clinical studies, IL-10 is detect-
able in blood samples from patients who experienced severe 
TBI within the first few hours after trauma, with maximal 
concentration 3 hours post injury.125–127 Although IL-10 has 
little effect on NPSCs directly, it plays an important role in 
modulating the injury microenvironment, which will be dis-
cussed in the next section.

TGF-β, another anti-inflammatory cytokine, is primar-
ily produced by microglia and astrocytes and expressed in the 
hippocampus (dentate gyrus).128,129 Preclinical ischemia mod-
els have found that TGF-β mRNA is significantly upregu-
lated within the first day of injury, as early as six hours post 
injury, generalized around the lesion areas and mediated by 
glial cell activation.130–132 Contrary to studies using ischemia 
models, a cryolesion model of brain injury found that TGF-β 
reached peak expression at 6 hours post injury and remained 
detectable for 1 week in the cortex and 12 hours to 1 week in 
the hippocampus,68 suggesting a region-dependent expression 
of TGF-β.

Similar to IL-6, TGF-β has been primarily associated 
with neuroprotection with respect to TBI, but has altering 
functions depending on the region of the brain where the 
cytokine is acting. For example, studies in transgenic TGF-β 
overexpression and exogenous TGF-β infusion exhibited a 
potent decrease in NPSC proliferation and a decrease in the 
neurogenesis and astrocytosis in the hippocampus.133,134 Con-
trary to these findings, in the SVZ, a stroke lesion model 
study of intranasally administered TGF-β reported a trend of 
augmented neurogenesis and proliferation.135 Together, these 
studies provide evidence that TGF-β inhibits the proliferation 
and differentiation of NPSCs in the SGZ and provides a foun-
dation to explore the action of TGF-β on NPSCs in the SVZ.

Cytokines influence NPSC behavior by modulating  
the injury microenvironment. The previous subsection 
focused on the direct effects that specific injury-induced 
soluble factors and cytokines may impose on NPSC behavior. 
This subsection explores the potential pathways by which the 
inflammatory cytokines that modulate injury microenviron-
ment may indirectly affect NPSC populations. The interplay 
between the injury microenvironment and efforts for endog-
enous repair is indisputable and too complicated to begin to 
tease out thoroughly in this review. Here, a few key inflamma-
tory cytokines are discussed, but this review admittedly only 
scratches the surface of this topic. Table 2 provides a summary 
of the effects that the cytokines discussed have on the injury 
microenvironment that may indirectly affect NPSC behavior.

IL-1β. IL-1β-mediated vascular remodeling plays an 
important role in NPSC migration and neurogenesis post 
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trauma. IL-1β has a hand in both the breakdown136 and 
regeneration of the blood–brain barrier (BBB).137 IL-1β 
has the most profound effect on astrocytes, either promot-
ing astrogliosis138 and initiating an array of anti-neurogenic 
responses139 or activating astrocytes and promoting 
angiogenesis, neurogenesis, and leukocyte infiltration.140,141 
The effect of IL-1β on astrocytes is potentiated by its con-
comitant action on microglial and endothelial cells; all the 
cell types together produce a variety of cytokines140,142,143 such 
as IL-6, IL-10,142,144 TNF-α,145 and TGF-β.146 IL-1β also 
modulates the expression of various growth factors such as 
FGF147 and BDNF148–151 and the chemokine SDF-1α.152

Specifically, in studies in LPS-stimulated macrophages 
and multiple sclerosis models, IL-1β was shown to signifi-
cantly induce astrocyte production of SDF-1α.152,153 Similarly, 
an in vitro study assessing the direct effect of various cytokines 
on glial cell secretion of FGF found that IL-1β increased FGF 
secretion in astroglia and microglia.147 Furthermore, IL-1β has 
been associated with both downregulation of BDNF concen-
tration and interruption of BDNF signaling pathways. Spe-
cifically, a study in rat hippocampal formation showed that 
the direct administration of IL-1β or LPS (which potentiates 
IL-1β) was sufficient to decrease the BDNF mRNA levels.148 
In more recent studies, Tong et al have implicated IL-1β with 
interrupting the neuroprotective properties of BDNF signal 
transduction by studying the direct effect of IL-1β on spe-
cific BDNF pathway proteins.149,150 Although little research 
has been conducted on this relationship in TBI models, these 
data provide promising evidence that similar results would be 
found in different models.

TNF-α. Although TNF-α produces an array of out-
comes for NPSCs in an inflammatory environment indepen-
dently, it is well known that TNF-α and IL-1β are intimately 
connected in some aspects of neurological development and 
inflammation,154,155 and have been shown to act synergisti-
cally in various cell culture models.142,156–158 In particular, 
TNF-α and IL-1β synergistically stimulate growth factor 
production from murine astrocytes and human microglial 
cells.142,158 In one study, IL-1β and TNF-α were shown to 

differentially induce cytokine gene expression, including 
IL-6, from endothelial cells when added alone, or synergisti-
cally when added together.144

IL−6. IL-6 has been linked to angiogenesis/vasculogenesis  
after brain injury, as it reportedly acts as a VEGF agonist.159,160 
Fee et  al measured IL-6  mRNA expression in a cryolesion 
injury model for the developing brain, and found marked 
upregulation up to 4 days post injury and recession by 16 days 
post injury, in line with tissue regeneration timelines.160  
A handful of studies have similarly observed a positive correla-
tion between IL-6 and increased endothelial cell proliferation 
in vitro.161,162 Collectively, the influence of IL-6 on angiogen-
esis/vasculogenesis after brain injury may indirectly influence 
migrating/recruited NPSCs, which commonly employ vaso-
philic migration patterns to home to the injury penumbra.

IL-10. The role of IL-10 after brain injury can largely 
be classified as anti-inflammatory. An early study found 
time- and dose-dependent inhibition of both TNF-α and 
IL-1β in rat TBI models as a result of intravenous IL-10 
administration,124 whereas other studies corroborate this  
effect with both in vitro and in vivo models of LPS-stimulated 
secretion of TNF-α and IL-1β from microglia, macrophages, 
and leukocytes.122,127,163,164 These findings were further cor-
roborated in a study of IL-10 effects on LPS-activated micro-
glia, where IL-10 inhibited the expression of both IL-1β and 
TNF-α and decreased the expression of the IL-6 receptor.164 
Together, these data provide evidence for the role of IL-10 as 
a powerful anti-inflammatory molecule and a foundation for 
research groups to pursue potential effects of IL-10 on cre-
ating a hospitable microenvironment for endogenous NPSC 
survival after TBI.

TGF-β. While TGF-β is primarily associated with neu-
roprotection in the injury environment, as it has been recorded 
to inhibit the production of pro-inflammatory cytokines in 
the injury environment, it has also been linked to stimulat-
ing reactive astrocytosis. Researchers have recorded TGF-β 
inhibiting induction of TNF-α from primary rat astrocytes 
at both the protein and the mRNA level.165 More recently, 
TGF-β was reported to inhibit the production of TNF-α 

Table 2. Studies implicating the role of cytokines in modulating the inflammatory response.

Cytokine Literature source Major roles in modulating the inflammatory milieu

IL-1β 132, 133 – Breakdown and regeneration of BBB

  134–137 – Promotes astrogliosis or activates astrocytes

  136, 138, 139 – Activates various cell types to augment self and other cytokine production

  143–149 – Modulates expression of FGF, BDNF, and SDF-1α

TNF-α 138, 154 – �Synergistically acts with IL-1β to stimulate growth factor production and  
cytokine gene expression 

IL-6 155–158 – Promotes angiogenesis/vasculogenesis

IL-10 118, 120, 123,159, 160 – Inhibits TNF-α and IL-1β production

TGF-β 161, 162 – Inhibits TNF-α production

  163, 164 – Implicated in astrocyte activation and proliferation
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and other inflammatory molecules from macrophages,166 
providing evidence that TGF-β may play an important role 
in ameliorating the injury microenvironment. In spite of these 
findings, TGF-β has been implicated in the activation of 
astrocytes using in vitro studies,167,168 and further that TGF-β 
augmented astrocyte proliferation.168

Bioengineering Approaches to Modulate 
Endogenous Stem Cell Behavior After TBI
A myriad of bioengineering approaches have emerged attemp
ting to manipulate the brain injury microenvironment to elicit 
more robust neural regeneration via providing exogenous 
support and/or stimulating the endogenous response. The 
two main bioengineering approaches are 1) stem cell trans-
plantation and 2) controlled release of bioactive factors. It 
is important to note the potential crossover between these 
“exogenous”-derived therapeutic approaches and the innate 
endogenous repair signaling mechanisms discussed in the 
previous section.

Stem cell transplantation. One approach many have 
taken to enhance the endogenous repair response after injury 
is the introduction of exogenous stem cells. There are still 
many questions surrounding the mechanisms by which stem 
cell transplants may function to mitigate the secondary injury 
of TBI as well as the fate of these cells (ie, viability, pheno-
typic fate) after transplantation. In part, these questions arise 
from the modulation of many different transplant parameters 
and metrics of success in the literature. One of the para
meters often modulated is the stem cell type, as both NPSCs 
and mesenchymal stem cells (MSCs) have been observed to 
differentiate into cells of a neural lineage under appropriate 
conditions.73,164–174 For this reason, there have been numer-
ous studies investigating the efficacy of NPSC and/or MSC 
transplantation following neural injury; several approaches to 
transplanting both NPSCs and MSCs will be discussed for 
the purpose of this review.

Bolus stem cell transplantation. Several critical parameters 
have been observed to influence the survival, phenotype, and 
functional benefits of bolus stem cell transplantation following 
TBI, including the cell type, injury model, severity, and trans-
plant timing and location, among others. Studies in MSCs have 
indicated that they are capable of expressing neuronal lineage 
markers after transplantation into animals that have sustained 
a TBI169–171 and that MSC transplantation may facilitate motor 
function recovery out to 1 month after injury.169,171 However, 
concerns have arisen regarding the safety of transplanting 
MSCs into the brain, as MSCs have been observed to form 
masses that elicit a significant inflammatory response, whereas 
NPSCs transplanted under the same conditions did not form 
such masses.172,173 Therefore, NPSC transplantation is appeal-
ing for both its perceived relative safety and the innate neu-
ronal differentiation capacity of NPSCs.

Several studies have been performed using NPSCs to 
determine the effect of timing and location on transplant fate. 

Shear et  al found that NPSC transplant survival after TBI 
was significantly higher at more acute time points after injury 
compared to the later time points, presumably due to glial 
scarring.174,175 With respect to transplant location, transplant 
survival and migration into the surrounding tissue were sig-
nificantly greater in the ipsilateral compared to contralateral 
hemisphere, in some cases, accompanied by greater motor 
and cognitive function recovery.176,177 Taken together, these 
data illustrate some of the many factors that can modulate the 
therapeutic benefit of stem cell transplantation after TBI.

One common thread among the many bolus transplant 
studies is that very few transplants differentiate into new neu-
rons (,5%).174,176–179 Most studies have observed differentia-
tion into GFAP + astrocytes to a greater extent than neuronal 
differentiation (∼5–10%); however, many transplanted cells 
sustain undifferentiated/unidentified phenotypes.169,178,179 These 
findings have led researchers to hypothesize that the benefit 
of stem cell therapy might lie in the trophic support that they 
provide to the local degenerating neurons.180–182 As such,  
a line of research has emerged in which stem cell transplants 
are designed to capitalize on their capacity to provide trophic 
support to cells within the injury microenvironment.

Modified stem cell transplants following neural injury. In 
recent years, several groups have looked at either precondition-
ing or genetically modifying cell transplants to prepare them 
for the cytotoxic injury microenvironment and/or increase 
their capacity for trophic support. This is an appealing option, 
as cell transplants can theoretically be used to deliver neuro-
protective factors while simultaneously providing the benefits 
of stem cell therapy. This approach has shown some promise, 
as BDNF-expressing NSPCs have been observed to enhance 
neuronal differentiation, synaptic plasticity, and the number 
of transplants retained in the lesion site after TBI out to  
8 weeks compared to normal NPSCs.183 These findings were 
accompanied by an improvement in motor function recovery 
at 7 days compared to normal NPSCs; however, this increase 
was insignificant by 4 weeks.183 BDNF-expressing MSCs 
have also been shown to significantly improve neurological 
function compared to normal MSCs out to 90  days after a 
moderate TBI.184

Another approach has been to increase transplant 
sensitivity to the injury-relevant factors that have been 
shown to promote survival, proliferation, migration, and/or  
differentiation through overexpression of the appropriate 
receptor. For example, Wang et  al observed attenuation of 
the inflammatory response after transplanting MSCs overex-
pressing CXCR4, the receptor for SDF-1α, into a lesion area 
after moderate TBI, and, interestingly, also observed local 
increases in VEGF and BDNF expression.185 Similar work 
in stroke models has shown that CXCR4-expressing MSCs 
result in increased neuronal differentiation, migration into the 
host tissue, and improved neurological function.186

The method of “priming” transplants to encourage 
neuronal differentiation upon transplantation is yet another 
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modification that may improve transplant efficacy. Gao et al 
primed NPSCs by exposing them to laminin, heparin, and 
FGF for several days prior to transplantation, and observed 
a post-transplant population that was ∼96% positive for early 
neuronal markers, a marked increase over previous work.187 
However, the functional integration and neurological benefit 
have yet to be determined for methods such as this.

Soluble signaling, such as neurotrophic factors and 
chemokines, is critically important, as evidenced by the prom-
ise demonstrated in these stem cell modification techniques; 
however, it is also critically important to consider the mechani
cal and integrin-centric signaling that transplants are exposed 
to. Therefore, another route taken for transplant improvement 
has been the development of scaffolds and novel neurotrans-
plantation systems.

Scaffolds for stem cell transplantation following neural 
injury. Given the importance of both mechanical and inte-
grin signaling in regulating cell behavior, much effort has 
been made to mimic native neural tissue in the construction 
of transplant scaffolds. While there have been some purely 
synthetic polymeric scaffolds, such as the woven poly(glycolic 
acid) scaffold used for NPSC transplantation by Park et al.188,  
significant attention has been given to the incorporation of 
extracellular matrix (ECM) components within scaffolds to 
provide integrin signaling to transplants. Moreover, these 
scaffolds are frequently hydrogels, as they can be easily tuned 
to mimic the mechanical properties of native brain.189,190 
Chopp et al have extensively investigated the use of collagen 
I gels as transplant scaffolds for MSCs, and have found the 
scaffolds to increase transplant retention within the lesion 
site and migration into the host tissue, decrease the lesion 
volume, promote synaptic plasticity within the surrounding 
tissue, and promote cognitive function recovery when com-
pared to bolus transplantation.191–194 Guan et  al have also 
found MSCs within collagen I gels to display increased via-
bility and neurite outgrowth following transplantation into 
the injury microenvironment.195

While these data are promising, collagen I is not native to 
neural tissue, and, as such, other groups have looked to incor-
porating ECM components or binding motifs that are less for-
eign to NPSCs, such as laminin. Given the vascular nature of 
the SVZ, it is logical that NPSCs respond favorably to lami-
nin substrates and, as mentioned previously, laminin has the 
capacity to promote neuronal differentiation of NPSCs.48,187 
Indeed, increased neuronal differentiation was observed in 
NPSCs transplanted in a self-assembling peptide gel modified 
with the laminin binding motif IKVAV.196 Moreover, Tate 
et al found that NPSC transplants migrated further into the 
host tissue and displayed increased long-term survival when 
transplanted in collagen I gels modified with laminin com-
pared to both collagen I only gels and collagen I gels modified 
with fibronectin.197 Several other ECM-based hydrogels have 
been investigated in vitro for their capacity to promote vari-
ous NPSC behaviors; however, their efficacy within the TBI 

microenvironment has yet to be determined.198 While these 
approaches all rely on endogenous signaling events to elicit a 
response from exogenous stem cell transplants, another viable 
approach is the delivery of these critical signals as a means to 
enhance the endogenous stem cell response.

Bioactive factors to modulate endogenous NPSC 
activity. A cursory look at the pathophysiology of TBI indi-
cates that increased bioavailability and modulation of specific 
signaling mediators may be exploited to regulate biochemical 
cascades linked endogenous repair mechanisms. As discussed 
earlier, the cellular mechanisms for endogenous neurotrophic 
support and neurogenesis exist even in non-neurogenic areas 
of the brain (ie, cortical tissue) after TBI or stroke. One major 
focus for tissue engineering/regenerative medicine is thus to 
modulate/amplify this innate capacity of NPSCs for directed, 
long-distance migration, ability to provide trophic support 
in the injury area, and capacity for neuronal differentiation 
and integration. A primary limiting factor for this approach, 
however, is the BBB, made of specialized brain microvessel 
endothelial cells (BMEC), pericytes, and glial cells such as 
astrocytes, which work to maintain exquisite control over all 
forms of molecular transport between blood and the CNS. 
The most common routes of delivery to the CNS (intrave-
nous, intracerebroventricular, intracortical, intrathecal, and 
intranasal, Fig. 4) all subject proteins to one or more factors 
such as 1) rapid clearance from the serum/CSF, 2) degrada-
tion and/or loss of activity due to protein half-life, and 3) lim-
ited to no penetration of the BBB, especially of large proteins/
peptides.199 Moreover, for cases where the BBB is bypassed, 
diffusion is usually the rate-limiting means of transport with 
injected agents penetrating only in the order of millimeters (or 
less) from the source in the brain parenchyma.200 As a result, 
maintaining an appropriate local concentration of a therapeu-
tic agent over a desired time window is especially challeng-
ing in the CNS. Interested readers are encouraged to refer to 
referenced reviews for further details regarding the BBB and 
routes of entry to the CNS.199,201,202

Notwithstanding the above limitations, delivery of 
proteins/peptides, receptor agonists/antagonists, and soluble 
receptors have been proposed for a variety of applications such 
as Parkinson’s disease and injury to the CNS. The cumulative 
data from such studies indicate that exogenous delivery of 
bioactive components can 1) elicit desired biological responses 
in the CNS and 2) produce positive therapeutic outcomes as 
measured by histological and/or behavioral outcomes. This 
section will focus on individual soluble factors and summa-
rize their biochemical effects following delivery into the CNS 
after injury.

SDF-1α. In the context of brain injury, exogenous 
SDF-1α delivery has been largely focused on angiogenic alter-
ations and not direct evaluation of endogenous NPSC recruit-
ment. For example, intracortical delivery of SDF-1α after 
lateral FPI in a rodent model showed some efficacy in induc-
ing angiogenesis.203 Additionally, blocking SDF-1α/CXCR4 
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signaling through injection of a soluble antibody significantly 
decreased microvessel density and aggravated functional out-
come relative to both vehicle and SDF-1α treated groups.204 
In a different study, intracortical administration of soluble 
SDF-1α 24  hours post TBI led to a lower degree of BBB 
disruption, lower expression of pro-inflammatory cytokines, 
and attenuated neuronal apoptosis in the injury penumbra.205 
However, the authors did not specifically look at histological 
data or behavior of NPSCs, or determine whether the thera-
peutic intervention also led to a functional benefit.

A growing body of evidence supports the therapeutic effi-
cacy of prolonged SDF-1α delivery for various applications such 
as wound healing,206,207 skeletal regeneration,208,209 and myo-
cardial infarctions.210,211 These studies demonstrate the viabil-
ity of recruiting progenitor cells through exogenous infusion 
of SDF-1α. However, there is a lack of studies that specifically 
elucidate the in vivo effects and feasibility of local sustained 
release of SDF-1α in the context of neural injury. A number 
of devices have been proposed that hope to achieve controlled 
release of SDF-1α over different time periods, which include 
SDF-1α-loaded star PEG-heparin hydrogels,212 poly(lactic-
co-glycolic)acid (PLGA) microparticles,213 chitosan-tripoly-
phosphate-based nanoparticles,214 poly(lactide ethylene oxide 
furmate) hydrogels,215 and a composite of gelatin/dextran and 
poly(N-isopropylacrylamide)-based stimuli-sensitive hydro-
gel.196 The above systems have been characterized in vitro and 
seem to maintain bioactivity of encapsulated SDF-1α to vary-
ing degrees.

VEGF. Multiple studies have investigated the effects of 
VEGF infusion after TBI. For example, continuous infusion 
of VEGF in the lateral ventricles in murine models has shown 

significant neural and angiogenic effects.216 Specifically, 
VEGF administration significantly reduced lesion size, 
increased SVZ cell proliferation, increased microvessel 
density, and increased proliferative cell markers in the peri-
lesion area.217 Another similar study for VEGF delivery to the 
lateral ventricle after ischemic insult found similar effects on 
infarct volume and angio/neurogenesis in the injury area.218 
However, the mechanism(s) involved in increased bioavail-
ability of VEGF leading to functional recovery is still unclear. 
Some evidence suggests that VEGF infusions help in pro-
moting the survival of immature neurons rather than directly 
affecting the proliferation of neuroblasts.219

Other means of VEGF delivery include the intranasal 
route, which can significantly increase concentrations in the 
olfactory bulb, frontal cortex, and thalamus when compared to 
intravenous injections.220,221 In order to garner sustained local 
release of VEGF, Emerich et al utilized alginate hydrogels and 
tested its effects on a rodent model of cerebral ischemia.222 The 
authors determined that in vivo VEGF concentration levels 
were undetectable in the striatum 10 hours after bolus VEGF 
injection, compared to ∼100  hours for animals receiving 
alginate +VEGF. As a result, measured lesion volumes were 
lower, and functional tests showed significant improvements 
relative to stroke  + bolus VEGF and stroke-only controls. 
Other studies have demonstrated the feasibility of VEGF 
release in Huntington’s disease222 as well as gene transfer for 
cerebral ischemia223 and Parkinson’s disease.224

FGF. Infusion of FGF both subcutaneously and through 
the intracerebroventricular route has been reported to increase 
the proliferation of NPSCs in the dentate gyrus and the 
SVZ,225,226 suggesting some ability for FGF transport through 
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Figure 4. The route of delivery to the central nervous system plays a critical role in determining the spatial and temporal distribution of infused agents. 
(A) Demonstrates conventional means of bypassing the blood–brain barrier, which includes the intracortical, intracerebroventricular, and intrathecal 
routes. Each route of delivery has its own strengths and weaknesses, and thus outcome of therapy depends heavily on proper selection of the means 
of administering the therapeutic agent/construct. Intrathecal injections are made directly in the subarachnoid space of the spinal cord, whereas 
intracerebroventricular and intracortical injections refer to infusion of drugs directly into the ventricles or into the cortical interstitium, respectively. 
Efficiency of drug accumulation in the CNS is very low, even in the cases where the blood–brain barrier is bypassed. This is especially a challenge for 
applications where high drug concentrations are required in a specific portion of the brain. (B) Bolus injections of a therapeutic have rather transient 
effects with minimal time in the therapeutic threshold window; however, (idealized) controlled release of bioactive molecules may achieve sustained 
biochemical effects throughout the therapeutic time window.
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the BBB and the ependymal lining.227 In an attempt to increase 
the efficiency of intravenous transport to the CNS, Wu et al 
described a biotinylted FGF molecule covalently modified 
with a monoclonal antibody for the transferrin receptor 
(TfR).228 This “Trojan Horse” strategy usually targets the 
TfR and undergoes receptor-mediated transport to the brain 
parenchyma.228 In this case, brain uptake was increased by a 
factor of 5, although total uptake was only about 0.05% of the 
total injected dose. Yet, the increased bioavailability of FGF 
[after middle cerebral artery occlusion (MCAO) in rodent 
models] was associated with a decrease in infarct volume and 
correlated with significant improvements in functional out-
come relative to vehicle and nonconjugated FGF.229 However, 
a limited amount of evidence exists for long-term functional 
benefits using this strategy. Intracerebroventricular infusion 
of FGF over 7 days after FPI in rodent models led to cogni-
tive recovery through significantly increased proliferation and 
neurogenesis in the SVZ and the SGZ.230 Some studies230,231 
have reported cognitive improvements in the absence of sig-
nificant neuroprotective effects on existing neurons in both 
fluid percussion and focal injury models. On the other hand, 
contradicting results from Dietrich et  al showed decreased 
lesion volume, indicating neuroprotection, after intravenous 
administration of FGF.232 More studies are needed to eluci-
date the relationship between neuroprotection and increased 
bioavailability of FGF. Additionally, FGF has also been cor-
related with augmented neurogenesis in the hippocampus and 
the SVZ following infusion in aged rodents.233

As opposed to bolus injections, devices that achieve 
controlled release of FGF have also been characterized. 
Controlled release of FGF leads to higher proliferation and 
phenotypic preservation of NPSCs cultured in vitro as well as 
lower sensitivity to oxidative stress, and thus a lower propen-
sity to undergo apoptosis.234 Chitosan microspheres covalently 
modified with heparin were synthesized that electrostatically 
immobilized FGF in the matrix, which exhibited increased 
NPSC cell attachment relative to groups with no FGF.235 
Devices proposed for controlled release for FGF include 
poly(lactic-co-glycolic)acid nanospheres and236 high-density 
collagen,237 as well as induced FGF expression through aden-
oviral transfection.238

EGF. Effects of EGF on neural cell types have demon-
strated enhanced survival, proliferation, and differentiation 
of neural precursors into neurons and astrocytes in vitro.65 
More recently, in vivo data for infusion into the ipsilateral lat-
eral ventricle after FPI indicated that the EGF-administered 
groups had higher proliferation rates in the SVZ, SGZ, and 
the hilus, in addition to affording neuroprotection for exist-
ing neurons relative to the vehicle.239 However, unlike FGF 
infusion,230 EGF administration for 7  days failed to show 
any long-term increase in NPSC proliferation in the dentate 
gyrus. Histological studies indicate preferential differentia-
tion of NPSCs toward an astroglial cell fate in the dentate 
gyrus and the SVZ.240 Regardless of the rather transient 

effects of EGF seen in this model, the authors still report 
a significant improvement in functional outcome. In vitro 
results for NPSCs exposed to EGF also support the results in 
the above study, in which increases in NPSC proliferation and 
preferential differentiation toward astrocytes were observed.241 
However, another study showed controlled release of EGF 
from a hyaluronan and methylcellulose hydrogel after corti-
cal ischemia led to a higher number of NPSCs differentiat-
ing into neuronal precursors relative to stroke-only controls 
in the SVZ.242 This may be an example of how the delivery 
method of therapeutics, in addition to the injury model, can 
measurably change the biological response.240 Other types of 
EGF delivery include an adenoviral-mediated gene delivery 
of heparin-binding EGF (HB-EGF; member of the EGF 
family), which increased NPSC proliferation and the extent 
of neurogenesis observed after cerebral ischemia.243

There is also substantial evidence that EGFR antago-
nism has possible therapeutic benefits.244 After injury, EGFR 
is upregulated primarily in astrocytes, and upon interaction 
with its ligands (EGF, TGF-α and others) can activate the 
process of astrogliosis.244,245 Results from a TBI (CCI) study 
indicated increased neuroprotection, attenuation of astroglio-
sis, and decreased levels of IL-1β after administration of sim-
vastatin.246 Simvastatin inhibits the formation of lipid rafts 
(essential for EGFR function) but does not specifically inhibit 
EGFR function. Specific EGFR reversible and irreversible 
antagonists have also been studied in the case of spinal cord 
injury203,247 and optic nerve regeneration,248 and shown inhi-
bition of astrogliosis, downregulation of pro-inflammatory 
cytokines, and improved functional outcome.

BDNF. Pencea et  al studied the effects of exogenous 
BDNF introduced through intracerebroventricular infusions 
into the lateral ventricles in rodent models.200 The investiga-
tors reported increased proliferation in the SVZ and striatum 
lining the lateral ventricle as well as in the thalamus and the 
hypothalamus regions lining the third ventricle. In all cases, 
significant increases in proliferation compared to saline infu-
sions are not seen beyond ∼1.8 mm away from the ventricle 
lining. In addition, the density of newly formed cells also 
has a direct correlation to the number of TrkB+ (receptor for 
BDNF) cells in the vicinity. Interestingly, the authors reported 
a lack of colocalization between proliferating and TrkB+ cells. 
This may indicate that BDNF has limited direct effects on 
NPSCs, and, rather, paracrine signaling from surrounding 
cells may play a more significant role. It is important to note, 
however, that internalization of the TrkB/BDNF receptor–
ligand complex is implicated in initiating the intracellular 
cascade in neurons.249 Thus, low TrkB immunopositivity does  
not necessarily implicate a lack of sensitivity to BDNF. After 
BDNF infusions, a significant increase in neuronal cell com-
mitment was seen only in the hypothalamus region. Adop-
tion of astroglial cell fate did not change significantly in any 
of the brain regions relative to saline controls. Although this 
study showed promising results in terms of increasing cell 
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proliferation, the invasive process of placing a cannula to 
reach the ventricles produces an injury itself and leads to a 
biochemical response.250 Moreover, the limited regions of the 
brain that can be accessed through intracerebroventricular 
infusions are still a challenge that needs to be overcome.

More recently, the effects of continuous release of BDNF 
have been proposed and evaluated both in vitro and in vivo. 
Huang et  al investigated the use of collagen hydrogels as a 
means of controlled delivery in vitro.251 Although the device 
had a cumulative burst release of about 50%, NPSC viability 
and proliferation rates were significantly higher in the BDNF-
loaded gel group for all time points evaluated (1, 4, and 7 days) 
relative to collagen by itself. Sustained release of BDNF (rela-
tive to supplementation in soluble form) also affected NPSC 
phenotype, which showed a significant bias toward neurons 
rather than astrocytes after 1 week, suggesting that the tem-
poral concentration profile of BDNF can be used to modulate 
NPSC behavior. Controlled release using nano-scale, semi-
aligned poly ε-caprolactone (PCL) fibers loaded with a short 
BDNF-mimetic ligand attempted to physically intercept and 
redirect NPSCs migrating on the rostral migratory stream 
(RMS).252 The authors found that PCL, with and without 
the BDNF mimetic, allowed a significant increase in NPSC 
migration into the injury tract (created by the injection needle) 
at 8 days post injury. However, at 21 days, significant increases 
in precursor cell population in the injury tract were observed 
only in the PCL  + BDNF-mimetic group. It is important 
to note that addition of the BDNF-mimetic protein did not 
improve the depth of NPSC infiltration into the injury tract 
regardless of time. In a similar study, the orientation of the 
PCL nanofibers was found to affect NPSC proliferation and 
differentiation, indicating both physical and chemical cues can 
be used to modulate NPSC behavior.253 Other types of deliv-
ery devices/systems have also been proposed, which include 
delivery through the intranasal route 254 and sustained release 
form PLGA-poly(L-lysine)-PEG microspheres,255 as well 
as delivery of adenoviral vectors carrying the gene encoding 
BDNF.256

Delivery of multiple growth factors. Co-delivery and/or 
orchestrated delivery of bioactive factors is an idea that is 
gaining traction in the field due to its potential for induc-
ing an enhanced functional recovery, in some cases, through 
a synergistic effect. For example, Kojima and Tater report 
that co-delivery of EGF and FGF-2 intrathecally after a spi-
nal cord injury can increase proliferation rates and migration 
of ependymal cells (which can give rise to NPSCs), whereas 
delivery of either of the factors alone cannot elicit the same 
response.257 Additionally, a collagen-based controlled-release 
device, also designed to deliver the EGF and FGF-2, reported 
similar findings after spinal cord injury.237 Many of the neu-
rotrophins mentioned in this review act to upregulate a similar 
array of intracellular cascades, and thus it can be challenging 
to select complementary sets of signals to acquire an additive 
or synergistic therapeutic outcome. For example, a cocktail of 

VEGF and FGF delivered to the lateral ventricle after TBI did 
not appear to provide significantly more benefit than delivery 
of VEGF alone.216 Specifically, the VEGF-only group was 
able to increase angiogenesis and the number of neuronal 
precursors around the injury area to a greater extent than 
the VEGF  +  FGF-treated groups. Additional studies look-
ing at various neurotrophin co-deliveries as well as hydrogel/
neurotrophin complexes indicate feasibility in the CNS after 
injury; however, there is still much to be understood regarding 
the complex interactions between neurotrophins after a neural 
injury.258–260 Interested readers are encouraged to refer to the 
review by Lee et al for more information.261

Summary
Although the administration of injury-relevant signaling fac-
tors has long been assessed for its potential to promote neu-
roprotection and neuroregeneration for a wide variety of CNS 
conditions, as of now there are no commercially available solu-
tions. Common pitfalls include rapid enzyme-mediated loss 
in bioactivity, nonspecific adsorption to serum proteins and 
tissues, as well as the inability to maintain therapeutic con-
centration levels in the brain regions specific to a given pathol-
ogy throughout a desired time window. Indeed, the focus in 
protein therapeutics is beginning to shift toward developing 
delivery devices that can preserve protein bioactivity and 
increase its bioavailability in an efficacious, predictable, and 
controlled fashion.262 Moreover, such devices can reduce the 
total dosage of drug required and thus avoid unwanted side 
effects.263 As mentioned earlier when discussing EGF delivery, 
there is evidence that the same signal, when presented differ-
ently (spatially and/or temporally), can affect the biochemi-
cal response.240,259,261 However, there is a paucity of studies 
looking specifically into uncovering these mechanisms, which 
could be key to developing efficient means for protein delivery 
for specific applications.

Another important consideration is the duality in func-
tion of the majority of signaling mediators after injury.264 For 
example, the anti-inflammatory signal, IL-6, on one hand, 
inhibits TNF-α and stimulates angiogenesis, but, on the 
other, upregulates chemotactic signaling and adhesion mole-
cule production that promotes recruitment of monocytes from 
the systemic circulation.265,266 Another example is SDF-1α, 
which is a potent chemotactic agent important in regulating 
the endogenous regeneration after injury but also has tumoro-
genic potential and has been correlated to neuropathic pain.267 
As a result, a candidate protein must be chosen very carefully 
in order to elicit the desired response. Otherwise, a substan-
tial improvement in long-term therapeutic outcome is unlikely 
due to direct and indirect interactions, which can be difficult 
to predict in such a complex system.

Many of these concerns are also reflected in the future 
of stem cell therapies for neural injury. As illustrated in this 
review, there are many parameters that govern the efficacy of 
stem cell transplantation in mediating repair (ie, cell type, 
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injury, transplant location and timing, cellular modifications, 
scaffolding, etc). Therefore, it is critically important to use the 
knowledge available regarding temporal and spatial signaling 
patterns after injury to inform future work in developing stem 
cell therapies for neural injury so as to have a better command 
of the driving forces behind their outcomes. Bringing together 
these many moving parts will move the field forward in a more 
productive and meaningful fashion.
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