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BACKGROUND: Multiple methods are employed for modeling adaptation when projecting the impact of climate change on heat-related mortality. The
sensitivity of impacts to each is unknown because they have never been systematically compared. In addition, little is known about the relative sensi-
tivity of impacts to “adaptation uncertainty” (i.e., the inclusion/exclusion of adaptation modeling) relative to using multiple climate models and emis-
sions scenarios.

OBJECTIVES: This study had three aims: a) Compare the range in projected impacts that arises from using different adaptation modeling methods; b)
compare the range in impacts that arises from adaptation uncertainty with ranges from using multiple climate models and emissions scenarios; c) rec-
ommend modeling method(s) to use in future impact assessments.

METHODS: We estimated impacts for 2070-2099 for 14 European cities, applying six different methods for modeling adaptation; we also estimated
impacts with five climate models run under two emissions scenarios to explore the relative effects of climate modeling and emissions uncertainty.
REsuLTS: The range of the difference (percent) in impacts between including and excluding adaptation, irrespective of climate modeling and emis-
sions uncertainty, can be as low as 28% with one method and up to 103% with another (mean across 14 cities). In 13 of 14 cities, the ranges in pro-
jected impacts due to adaptation uncertainty are larger than those associated with climate modeling and emissions uncertainty.

CoNCLUSIONS: Researchers should carefully consider how to model adaptation because it is a source of uncertainty that can be greater than the uncer-

tainty in emissions and climate modeling. We recommend absolute threshold shifts and reductions in slope. https://doi.org/10.1289/EHP634

Introduction
One of the direct public health risks posed by climate change is
increased heat-related mortality and morbidity (Gosling et al.
2012; Hajat et al. 2014; Hales et al. 2014; Kingsley et al. 2016;
Peng et al. 2011; Petkova et al. 2013, 2016; Sheridan et al. 2012;
Vardoulakis et al. 2014; Wu et al. 2014) owing to increased
occurrences of cardiovascular and chronic respiratory causes
(Huynen and Martens 2015; Martens 1998; McMichael et al.
2006). Governments and community organizations around the
world are increasingly allocating resources to prepare for a
warmer future climate (Boeckmann and Rohn 2014). Central
questions that should guide the decision-making process when
making such investments include a) what are the likely health
impacts of possible changes, and ») what are the interventions
and programs, and the scale thereof, that offer the highest proba-
bility of reducing the magnitude of any adverse impacts?
Answers to these questions depend in part on the extent to which
populations may adapt to future climate change.

Adaptation mechanisms may occur through autonomous ad-
aptation, such as physiological acclimatization and a range of be-
havioral adaptations such as dressing appropriately during hot
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weather. They may also occur through planned adaptation, such
as the introduction of government subsidies to increase air condi-
tioning installations or the introduction of heat health warning
systems, or through public responses via health services such
as changing prescription patterns and arranging home visits.
Attempts to combine both autonomous and planned adaptation to
represent the whole range of adaptation mechanisms and then to
factor them into quantitative assessments of the impact of climate
change on heat-related mortality by statistical modeling are
largely based on liberal assumptions on the extent to which popu-
lations will adapt (Hayhoe et al. 2004; Honda et al. 2014b;
Jenkins et al. 2014; Knowlton et al. 2007; Mills et al. 2014,
Zacharias et al. 2015).

The potential to adapt is supported by a growing body of evi-
dence that shows populations throughout the world are becoming
less sensitive to high temperatures; for example, see reviews by
Boeckmann and Rohn (2014) and Hondula et al. (2015).
However, there is variation in the magnitude of the declines in
sensitivity that have been observed between studies (e.g., Bobb
et al. 2014; Schwartz et al. 2015; Todd and Valleron 2015),
across locations (Gasparrini et al. 2015a), and over time (Astrom
et al. 2016). There are also overall limits to adaptation (Smith
et al. 2014; Woodward et al. 2014) as, for example, air condition-
ing penetration reaches 100% or as physiological tolerance
reaches biological limits. In addition, many studies neglect to
unpick the factors that have driven declines in sensitivity to heat
and whether the declines are due to autonomous or planned adap-
tation (Petkova et al. 2014b). Such omissions preclude an under-
standing of the policies that could help foster the most efficient
adaptation practices. Multiple data sets on factors such as air con-
ditioning penetration, human behavior, activation of heat health
warnings, and changes in health care provision are needed to
address this issue, but such data sets are rarely available at a suffi-
cient temporal resolution (several decades) to elucidate the
effects. The research needed to reveal these important insights
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will require an interdisciplinary approach that combines quantita-
tive and qualitative methods.

Variation in the magnitude of observed declines in sensitivity
to heat has limited the ability of researchers to investigate the
effects of adaptation assumptions on projections of the impact of
climate change. Thus, some researchers have not considered ad-
aptation effects at all (e.g., Baccini et al. 2011; Hajat et al. 2014;
Kingsley et al. 2016; Peng et al. 2011; Vardoulakis et al. 2014;
Wu et al. 2014). Such an approach, however, which ignores what
we refer to here as “adaptation uncertainty” (i.e., the sensitivity
of impacts to including and excluding adaptation modeling
respectively), is acknowledged to likely overestimate impacts
(Huang et al. 2011; Martin et al. 2012; Petkova et al. 2013).

Within this context, a number of impact assessments have
accounted for adaptation uncertainty by representing adaptation
statistically in the modeling process, suggesting that impacts
could be up to 30-80% (Jenkins et al. 2014; Sheridan et al. 2012)
lower or more (Honda et al. 2014a) in the future with adaptation
than without. Although the inclusion of adaptation may be con-
sidered an advantage over excluding it because it accounts for
likely autonomous and planned adaptation, it is important that the
modeling methods are justified robustly with reference to empiri-
cal evidence. An arbitrary assumption that populations might
adapt by 100% (Honda et al. 2014a), for instance, could lead to
underestimation of climate change impacts.

Statistical Methods for Modeling Adaptation

A variety of different statistical methods have been used to model
adaptation. Six main methods can be employed (Table 1). In all
but one study, where three of the methods were applied in the
Netherlands (Huynen and Martens 2015), the six methods have
been applied independently and have never been compared

quantitatively, although an interesting discussion of the methods
is presented by Kinney et al. (2008). Our study is distinct from
all previous work because we compare all six methods across
multiple European cities and because we consider multiple
assumptions in the magnitudes of potential adaptation systemati-
cally for each method. We describe the six methods here and dis-
cuss their strengths and limitations.

Two methods are based on shifting the threshold temperature
of an epidemiological exposure-response function (ERF). Many
different conceptualizations of threshold temperatures are presented
in the literature, including minimum mortality temperatures, opti-
mum temperatures, and other derivations related to statistical differ-
ences in relative risk between baseline and extreme conditions (see
Astrom et al. 2016; Honda et al. 2014b; Petitti et al. 2016).
Regardless of the specific statistical definition of the threshold, in
general, the risks of heat-related mortality are lowest (or lower) at
the threshold, whereas for temperatures higher than the threshold
there is a proportionally higher risk (e.g., Baccini et al. 2008).

The “absolute threshold shift” method first defines the
present-day threshold temperature in absolute terms (°C) and
then increases it in the future. Assessments have assumed shifts
of the ERF in the future by up to 2°C (Jenkins et al. 2014), 2.4°C
(Huynen and Martens 2015), 3°C (Dessai 2003) and 4°C
(Gosling et al. 2009). This is perhaps the most straightforward
method, which is why it has been used most frequently in previ-
ous studies. The magnitude of the shift tends to be selected arbi-
trarily and to be justified with no reference to empirical evidence
from epidemiological studies.

The “relative threshold shift” method assumes “0% adapta-
tion” when the threshold temperature in absolute terms (which is
calculated originally as a percentile of the present-day daily tem-
perature time series) is also used with the future time series. In
contrast, “100% adaptation” is assumed when the threshold

Table 1. Summary of statistical methods used to model adaptation in climate change impact assessments for heat-related mortality.

Method

Summary

Strengths

Limitations

Studies that use the method

Absolute threshold shift

Relative threshold shift

Reduction in slope of the
exposure response
function (ERF)

Combined absolute
threshold shift with
reduction in slope of the
ERF

Combined relative
threshold shift with
reduction in slope of the
ERF

Analog ERFs

The absolute threshold
temperature is shifted to a
higher value under climate
change, between 2°C and
4°C

The threshold, when defined
as a percentile of the
temperature distribution, is
the same percentile under
climate change as it is in the
present (100% adaptation)

The slope of the ERF is
reduced under climate
change by up to 10%

The absolute threshold
temperature is shifted to a
higher value under climate
and at the same time the
slope of the ERF is reduced

The relative threshold
temperature is shifted to a
higher value under climate,
and at the same time, the
slope of the ERF is reduced

Uses ERFs for locations with
present temperatures similar
to those projected to occur
in the location of interest
under climate change

Straightforward to apply

Straightforward to apply and
supported by some (limited)
empirical evidence

Straightforward to apply

Intuitive because it assumes
that both the threshold and
sensitivity to increasing heat
will change under climate
change

Intuitive because it assumes
that both the threshold and
sensitivity to increasing heat
will change under climate
change

Qualitatively informed by
epidemiological evidence
that populations in warmer/
colder regions tend to be
less/more sensitive to
relatively higher
temperatures (Davis et al.
2003)

Magnitude of shift is
arbitrarily defined without
reference to epidemiological
evidence

Informed by evidence from
only a single empirical
study (Honda
et al. 2006)

Magnitude of slope reduction
is arbitrary and not
straightforward to apply to
nonlinear ERFs.

Magnitude of shift and slope
reduction is arbitrary and
not straightforward to apply
to nonlinear ERFs

Magnitude of shift and slope
reduction is arbitrary and
not straightforward to apply
to non-linear ERFs

Assumes that the underlying
confounding factors that
contribute to the ERF can
be transferred to a different
location

Dessai (2003) Gosling et al.
(2009) Huynen and Martens
(2015) Jenkins et al. (2014)

Honda et al. (2014a) Honda
et al. (2014b) Zacharias
et al. (2015)

Huynen and Martens (2015)

Huynen and Martens (2015)

Recommended by Huang
et al. (2011) but not yet
used in a climate change
impact assessment.

Hayhoe et al. (2004)
Knowlton et al. (2007)
Mills et al. (2014)
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temperature for the future is at the same percentile value as that
of the present day (the absolute value will therefore be higher in a
warmer climate). The midpoint of the threshold temperatures
between 0% and 100% adaptation is “50% adaptation.” Previous
assessments have assumed 50% (Zacharias et al. 2015) and 100%
adaptation (Honda et al. 2014a, 2014b). A caveat of this method is
that the magnitude of shifts employed in the studies that use this
method are based only upon changes in the threshold temperature
observed in Tokyo between 1972 and 1994 (Honda et al. 2006).

Temperature-mortality ERFs are typically described by linear
or nonlinear slopes that start from a threshold temperature.
Accordingly, the third adaptation modeling method reduces the
slope of the ERF in the future. Huynen and Martens (2015)
assumed a 10% reduction in linear slope using this method. This
method is intuitive because it is plausible that populations may
become less sensitive to high temperatures under climate change,
which would manifest as a reduction in the slope of the ERF.
However, Huynen and Martens (2015) acknowledge that the 10%
decline in slope that they applied is hypothetical, and they do not
provide empirical evidence to support it. The method is straight-
forward to apply to a linear ERF but considerably more compli-
cated for a nonlinear ERF.

The fourth and fifth methods combine shifts in the threshold
with reductions in the slope. Huynen and Martens (2015)
assumed a reduction in the slope of the ERF by 10% and com-
bined this with absolute threshold shifts. No studies have yet
combined a relative threshold shift with a reduction in slope de-
spite encouragement that studies should combine shifts with
reductions in slope (Huang et al. 2011).

The sixth method uses “analog ERFs,” that is to say, ERFs
derived for locations with temperatures similar to those projected
to occur in the future in the location of interest. Although the
method has been criticized (Kinney et al. 2008), and although it
assumes that the underlying confounding factors that contribute
to the ERF can be transferred to a different location, it is popular
(Hayhoe et al. 2004; Knowlton et al. 2007; Mills et al. 2014)
because it draws upon epidemiological evidence that populations
in warmer/colder regions tend to be less/more sensitive to rela-
tively higher temperatures (Davis et al. 2003).

A caveat that runs through all the methods employed in previ-
ous work is that they are not supported with reference to specific
empirical evidence that confirms the magnitudes of adaptation
assumed. The only exception is that the relative threshold shift
method has been justified with reference to the observation that
threshold temperatures can generally be estimated using the
80-85th percentile of the daily maximum temperature in multiple
locations in Japan (Honda et al. 2007, 2014b). It would of course
be preferable to replicate this observation across other locations.
A novel opportunity exists to develop adaptation modeling meth-
ods based upon empirical evidence of historical adaptation
because a growing body of evidence shows that in some cities
and countries, populations are becoming less sensitive to
extremes of heat (Arbuthnott et al. 2016; Astrom et al. 2013,
2016; Bobb et al. 2014; Gasparrini et al. 2015b; Honda et al.
2006; Schwartz et al. 2015). The mechanisms associated with
and driving this decline are a matter of debate, but it is clear from
these studies that population sensitivity to heat can and does vary
over time. Therefore, it is somewhat surprising that there has
been no significant advancement in the statistical methods used
to model adaptation over the past decade; the methods used
>10y ago are still being used now (Table 1).

Current Research Gaps

The application of multiple adaptation modeling methods across
different climate change impact studies means that there is no
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clear understanding of the relative effects that each method can
have on the impacts. Nor is there a recommendation of what
method is most appropriate for application (Huang et al. 2011).
This problem is compounded by the general lack of rationale for
the adaptation methods chosen in past studies. Some methods
have been used more frequently than others: for example, abso-
lute threshold shifts (Table 1), perhaps because they are more
straightforward to apply than some of the other methods.

The use of different Global Climate Models (also known as
General Circulation Models; GCMs) and emissions scenarios in
climate change impact assessments enables an evaluation of the
sensitivity of the impacts to both ‘“climate model uncertainty”
and “emissions uncertainty” (Gosling et al. 2012; Hajat et al.
2014; Peng et al. 2011; Zacharias et al. 2015). Although a limited
number of impact studies have included multiple GCMs, emis-
sions scenarios, and adaptation assumptions together in the mod-
eling exercise to account for these three key uncertainties
(Gosling et al. 2009; Petkova et al. 2016; Sheridan et al. 2012),
such a holistic approach is uncommon (Huang et al. 2011). To
this end, little is known about the relative contributions of these
three sources of uncertainty to ranges in projections of heat-
related mortality impacts.

To address these important research gaps, our study had three
main objectives. Firstly, we conducted the first systematic com-
parison of the range in projected impacts that arises from using
different adaptation modeling methods employed in previous
studies; secondly, we compared the range in impacts that arises
from adaptation uncertainty (i.e., impacts with the inclusion/
exclusion of adaptation) to the respective ranges from climate
modeling and emissions uncertainty; and thirdly, we aimed to
provide the first recommendation of one or several adaptation
modeling methods to use in future impact assessments.

Methods

Experimental Design

We estimated the mean annual warm season (1 April to 30
September) heat-related mortality rate attributable to climate
change (AMort-CC) across 14 European cities (see Table 2)
under the assumption that populations will not adapt in the future,
that is, “no adaptation.” We then estimated the impacts using six
different methods for modeling adaptation. In all cases, the
impacts were estimated using climate projections from one GCM
(HadGEM2-ES) that was run under a single emissions scenario
[Representative Concentration Pathway (RCP) 8.5] to control for
the effects of climate modeling and emissions uncertainty. We
chose RCP8.5 because it is the highest of the four RCP emissions
scenarios commonly used in climate modeling (Riahi et al.
2011), meaning that it should a priori enhance elucidation of the
effects of modeling adaptation with different methods under a
plausible emissions scenario. This approach enabled calculation
of the range in impacts that arises from estimating them with ad-
aptation and with no adaptation.

We also estimated impacts with no adaptation using climate
projections from five GCMs run under RCP8.5 to explore the
effect of climate modeling uncertainty while controlling for adap-
tation and emissions uncertainty. Furthermore, we estimated
impacts with HadGEM2-ES run under low (RCP2.6) and high
(RCPS8.5) emissions scenarios to explore the effect of emissions
uncertainty while controlling for adaptation and climate modeling
uncertainty. The experimental design is summarized in Table 3.

The 14 cities were chosen because ERFs that were developed
using the same methodology for each city were available
(Baccini et al. 2008). Thus, we had a consistent set of ERFs upon

087008-3



Table 2. Components of the Exposure Response Functions (ERFs) applied in this study, which are based on model estimates derived by Baccini et al. (2008).

Threshold temperature

Baseline daily mortality rate

Relative risk Concentration response

City “C) Total population (per 100,000) (RR) factor (CRF)
Athens 32.7 3188305 2.12 1.0554 0.054
Barcelona 22.4 1512971 2.37 1.0156 0.015
Budapest 22.8 1797222 3.95 1.0174 0.017
Helsinki 23.6 955143 1.79 1.0372 0.037
Ljubljana 21.5 263290 2.39 1.0134 0.013
London 23.9 6796900 2.19 1.0154 0.015
Milan 31.8 1304942 2.02 1.0429 0.042
Paris 24.1 6161393 1.88 1.0244 0.024
Prague 22 1183900 2.95 1.0191 0.019
Rome 30.3 2812573 1.88 1.0525 0.051
Stockholm 21.7 1173183 2.38 1.0117 0.012
Turin 27 901010 2.12 1.0332 0.033
Valencia 28.2 739004 1.98 1.0056 0.006
Zurich 21.8 990000 1.17 1.0137 0.014

which to test the sensitivity of climate change impacts to adapta-
tion assumptions.

Climate Change Projections

Time series of daily maximum temperature (fy,), mean tem-
perature (fyean), and mean relative humidity (RH) were extracted
for the 0.5°%0.5° grid cells located closest to each city for the
present day (1981-2010) and for the future (2070-2099) from
five GCM simulations (HadGEM2-ES GCM, IPSL-CM5A-LR,
MIROC-ESM-CHEM, GFDL-ESM2, and NorESMI1-M). This
set of GCMs has been used in numerous impact assessments to
demonstrate the range in impacts that can arise from climate
modeling uncertainty (Warszawski et al. 2014).

Each GCM was run under RCPS8.5 (high emissions) and
RCP2.6 (low emissions) because these are the highest and lowest
emissions scenarios, respectively, commonly used in climate
modeling that are available from the four RCP emissions scenar-
ios (Riahi et al. 2011). By using the highest and lowest emissions
scenarios, we were able to investigate the maximum extent to

which emissions scenario choice contributes to the uncertainty in
projected heat-related mortality impacts.

The climate variables were bias-corrected towards an
observation-based data set (Weedon et al. 2011) using an estab-
lished method (Hempel et al. 2013) specifically designed to pre-
serve long-term trends in temperature projections in order to
facilitate climate change impact assessments. The GCM data
could therefore be used for the present-day and future time peri-
ods in the impact assessment.

The ERFs we used (Baccini et al. 2008) required daily maximum
apparent temperature (A7 . ), which was computed as follows:

AT pax = — 2.653 +0.994 X fray +0.0153 X (1), (1]

where t4 is the daily mean dew point computed from RH and
Imean following the method described by Tetens (1930). For
Barcelona, the daily mean apparent temperature (AT eq.n) had to
be calculated because the ERF for Barcelona required this instead
of AT ax. Therefore, we calculated daily AT yeqan by replacing fmax
Wwith #inean in Equation 1.

Table 3. Summary of the experimental design, showing the adaptation modeling methods compared and the Global Climate Models (GCMs) and emissions

scenarios used.

Range in impacts Range in impacts
from climate from emissions
modeling uncertainty,
uncertainty, controlling for
controlling for  adaptation and

adaptation and climate
Range in impacts from adaptation uncertainty, controlling emissions modeling

Rationale for climate modeling and emissions uncertainty uncertainty uncertainty
GCMs HadGEM2-ES HadGEM2-ES, = HadGEM2-ES

IPSL-CM5A-LR,

MIROC-ESM-

CHEM, GFDL-

ESM2,

NorESM1-M
Emissions scenarios RCP8.5 RCP8.5 RCP2.6, RCP8.5
Number of climate 1 1 1 1 1 1 5 2

model simulations

Adaptation No adaptation Absolute Relative Reductionin ~ Combined Combined Analog ERFs No adaptation No adaptation
modeling threshold shift threshold shift slope of the absolute threshold relative threshold (“Analog”)
method (“Thresh °C”) (“Thresh %) ERF (“Slope”) shift with reduction  shift with reduction
in ERF slope in ERF slope
(“Thresh °C + Sens”)  (“Thresh % + Sens™)
Magnitude of None 1°C 25% 5% All 20 possible All 20 possible Use ERF from None None
adaptation 2°C 50% 10% combinations combinations analog city
investigated 3°C 75% 15%
4°C 100% 20%
25%

Note: ERF, Exposure Response Function; RCP, Representative Concentration Pathway; Sens, sensitivity; Thresh, threshold.

Environmental Health Perspectives
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Heat-Related Mortality Estimation

We applied city-specific linear ERFs derived from Baccini et al.
(2008) for each of the 14 cities. The ERFs describe linear rela-
tionships between daily AT ax (AT mean for Barcelona) and daily
heat-related mortality in terms of relative risk (RR). RRs were
reported by Baccini et al. (2008) as a percentage change in mor-
tality per 1°C above the city-specific threshold temperature. We
converted the RRs to RR ratios from

percentage change = (RR — 1) x 100. [2]

B, the concentration-response factor [CRF, the estimated
slope of the linear relationship between AT, (ATmean for
Barcelona) and daily heat-related mortality] was derived from the
following:

RR = expﬁAT [3]

where AT is a 1°C change in daily AT px (AT ean for Barcelona)
above the threshold temperature. The RRs, CRFs and threshold
temperatures for each city are displayed in Table 2.

Daily heat-related mortality for each city was then calculated
from the city-specific ERFs for the present day (1981-2010) and
for the future (2070-2099). For both the present day and the
future, we first calculated the daily attributable fraction, AF,
which is the fraction of the mortality burden attributable to the
risk factor AX [daily ATmax (ATmean for Barcelona) above the
threshold temperature], for the exposed population. Following
the methods described in previous studies, it was assumed that
the whole population at the threshold temperature is exposed
(Huynen and Martens 2015; Knowlton et al. 2007; Schwartz
et al. 2015; Vardoulakis et al. 2014):

AF=1—exp PxaX [4]

Following an established method, the AF was multiplied by
the baseline daily mortality rate (yo, Table 2) and the exposed pop-
ulation (Pop; Table 2) to yield the absolute number of daily heat-
related deaths (Mort) for both the present day and the future (Hajat
et al. 2014; Huynen and Martens 2015; Knowlton et al. 2007,
Peng et al. 2011; Petkova et al. 2013; Schwartz et al. 2015;
Vardoulakis et al. 2014; Wu et al. 2014), as follows:

Mort =y x AF x Pop/100,000 [5]

Mort was calculated only for the warm season (1 April—
30 September) because the ERFs were derived for these months
only (Baccini et al. 2008). AMort-CC was then calculated by
converting Mort into a mortality rate (per 100,000, using Pop)
and then subtracting it for the present-day time period from the
estimate for the future time period.

We did not change y, and Pop between time periods, in line
with previous studies (e.g., Gosling et al. 2012; Petkova et al.
2013; Wu et al. 2014), because estimation of AMort-CC as a rate
instead of as absolute deaths facilitates comparisons across
GCMs, emissions scenarios, different cities, and different meth-
ods for modeling adaptation. Application of population projection
scenarios [e.g., the shared socioeconomic pathways (SSPs),
O’Neill et al. (2014)] would yield different absolute numbers of
deaths between population scenarios but not different estimates
of AMort-CC.

Modeling Adaptation

We investigated the sensitivity of AMort-CC to the six main adapta-
tion modeling methods that we discussed earlier. AMort-CC was
estimated for each of the 14 cities for each method separately (Table 3).

Environmental Health Perspectives

Absolute threshold shifts in the ERF of 1, 2, 3, and 4°C were
investigated to cover the range of shifts employed in past studies
using this method (Dessai 2003; Gosling et al. 2009; Huynen and
Martens 2015; Jenkins et al. 2014).

For relative threshold shifts, we shifted the ERFs by 25, 50, 75,
and 100% because these values cover the range of values used in
paststudies (Hondaetal. 2014a,2014b; Zacharias et al. 2015).

We reduced the slope of the ERF by 5, 10, 15, 20, and 25%.
The 10% value was chosen in line with Huynen and Martens
(2015), but because no other study has used this method, we also
considered reductions of <25% to provide an indication of what
might result from other assumed selected reductions in slope.

Absolute threshold shifts (1, 2, 3, and 4°C) and relative
threshold shifts (25, 50, 75, and 100%) were each combined with
reductions in the slope of the ERF (5, 10, 15, 20, and 25%).

Previous studies have paired locations for the analog ERF
method by comparing mean annual temperatures (Knowlton et al.
2007), mean summer temperatures (Hayhoe et al. 2004), or maxi-
mum summer temperatures (Mills et al. 2014) between present-
day and future time periods for multiple locations, but these
approaches do not account for the whole statistical distribution of
temperatures. This is a significant limitation because it is the
extremes of temperature, as well as the mean, that are important
for heat-related mortality.

Therefore, we developed a more advanced approach that better
accounts for the shapes of the temperature distributions between
two cities. We created analog city pairs based on the projected prob-
ability distribution functions (PDFs) of warm-season daily A7 x.
The best “match” for each city’s future climate was determined by
performing a comparison of the nonparametric Kolmogorov—
Smirnov (K-S) test statistic (Massey 1951) between present-day and
future temperature distributions. The K-S test statistic is a measure of
the maximum distance between two continuous distribution functions.
For 13 cities (Barcelona was excluded here because it was the only city
not to use AT, in its ERF), the city whose present-day distribution
that had the lowest test statistic when compared with an individual
city’s future distribution was selected as a match. For example, the pro-
jected climate of London was found to be most similar to that of
present-day Milan (out of the 12 possible options) (Figure 1; see also
Table S1); thus, AMort-CC for London was computed using the
London climate change projections as input to the Milan ERF.

Results

Comparison of Impacts between Adaptation Modeling
Methods

Figure 2 shows the range in AMort-CC impacts (per 100,000) for
each city that result from including and excluding adaptation, and
Figure 3 shows the difference (percent) in impacts between includ-
ing and excluding adaptation for each adaptation modeling method.
These two figures show that there are large contrasts in the ranges of
impacts between the different adaptation modeling methods.

The contrasts are highlighted in Table 4, which shows, as a
mean across all 14 cities, the range of the difference (percent) in
impacts between including and excluding adaptation. The ranges
are 49% (absolute threshold shift), 94% (relative threshold shift),
28% (reduction in slope of the ERF), 68% (absolute threshold
shift combined with a reduction in slope of the ERF), 103% (rela-
tive threshold shift combined with a reduction in slope of the
ERF), and 76% (analog ERF).

Combining a relative threshold shift with a reduction in the
ERF was associated with the largest ranges in impacts across all
the methods for all cities except Valencia. Relative threshold
shifts were associated with the second-largest ranges in impacts.
For example, with relative threshold shifts of 50% (100%),
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Figure 1. PDFs of present-day AT,y distributions for each city (solid black line); the future distribution under climate change as simulated by Global Climate
Model HadGEM2-ES under Representative Concentration Pathway (RCP) 8.5 for the same city (dashed black line) and all other cities (solid thin gray lines);
and for the same city, the distribution for the city that under climate change is best matched to it (solid thick gray line) according to the Kolomorgorov—
Smirnov (K-S) statistic (displayed in the top right of each panel; K-S statistics for all possible matches are displayed in Table S1).
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Figure 2. Mean annual warm season heat-related mortality rates (per 100,000) attributable to climate change (AMort-CC) for 2070-2099 using climate change pro-
jections from Global Climate Model (GCM) HadGEM2-ES run under Representative Concentration Pathway (RCP) 8.5, when different adaptation modeling meth-
ods are applied. Also displayed is AMort-CC with climate change projections from five GCMs run under RCP8.5 with no adaptation (“GCMs”), and AMort-CC with
climate change projections from HadGEM2-ES run under two emissions scenarios (RCP2.6 and RCP8.5) with no adaptation (“RCPs”). Blue lines and whiskers
denote where impacts have been estimated with adaptation modeling methods employed and red lines and whiskers denote where impacts have been estimated with
no adaptation. A denotes the number of adaptation modeling methods that have a range that is greater than or equal to the range for GCMs and/or RCPs. The ranges
are quantitatively summarized in Table 4.
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Figure 3. Differences (percent) between estimating AMort-CC with each adaptation modeling method and with no adaptation. All estimates are for 2070-2099
with climate change projections from the Global Climate Model (GCM) HadGEM2-ES run under Representative Concentration Pathway (RCP) 8.5. The axis
labels are the same as in Figure 2. This is not a stacked bar graph: The values should be read from the left (right) of each box if they are left (right) of zero. No
analog projection is available for Athens because the city was its own match in the comparison of current and future temperature distributions; no analog pro-
jection is available for Barcelona because a different exposure variable was used for projections for Barcelona than for the other study cities.
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Table 4. Statistical ranges (maximum minus minimum values of the distribution) of the differences (%) between estimating AMort-CC with the upper limit of
each adaptation modeling method (shown in parentheses) and with no adaptation.

Absolute threshold
shift combined with

Relative threshold
shift combined with

Absolute Relative Reduction in the reduction in slope of reduction in slope of
threshold shift threshold shift slope of the ERF ERF (Thresh°C + ERF (Thresh % + Analog ERF

City (Thresh °C =4°C) (Thresh % = 100%) (Slope =25%) Sens =4°C +25%) Sens = 100% +25%) (Analog)
Athens 44 93 27 66 105 0
Barcelona 48 89 36 72 106 0
Budapest 42 89 32 66 101 15
Helsinki 61 96 26 74 100 48
Ljubljana 40 89 28 58 97 94
London 58 100 26 74 105 68
Milan 37 100 24 54 103 13
Paris 51 100 27 67 106 33
Prague 43 89 30 64 100 41
Rome 42 96 26 60 104 22
Stockholm 62 100 25 75 100 25
Turin 79 100 18 82 100 82
Valencia 45 85 38 77 108 608
Zurich 40 94 25 63 100 13
Mean 49 94 28 68 103 76

Note: The values describe the width of each bar in Figure 3. AMort-CC, heat-related mortality rate attributable to climate change; ERF, Exposure Response Function; Thresh,
threshold.
“The mean = 35 if the result for Valencia (608) is removed.

AMort-CC declined from 84, 79, 72, and 77 deaths per
100,000 under no adaptation to 43 (6), 41 (9), 29 (0) and 37
(3) deaths per 100,000 with adaptation for Athens, Budapest,
Milan, and Rome, respectively (Figure 2). In terms of the dif-
ference (percent) in impacts between including and excluding
adaptation (Figure 3), these are equivalent to 49% (93%), 48%
(89%), 60% (100%), and 52% (96%) respectively (Figure 3). In
five cities, a relative threshold shift of 100% resulted in
AMort-CC reaching zero (London, Milan, Paris, Stockholm,
Turin); that is to say, climate change had no effect on heat-
related mortality with adaptation.

Across the methods we considered, the smallest ranges in
impacts occurred with reducing the slope of the ERF. For all
cities, the differences in impacts between adaptation and no
adaptation were <40% when the slope was reduced by the
maximum amount we considered (25% reduction in slope; see
Figure 3).

The methods we investigated generally had similar effects on
AMort-CC across cities; in other words, increasing the thresholds
in the increments we considered from 0°C to 4°C and from 0% to
100% and reducing the slope by 0-25% were all associated with
broadly linear declines in AMort-CC as the magnitude of assumed ad-
aptation increased (Figure 2). The analog ERF method, however,
resulted in more disparate estimates of AMort-CC. There were large
differences between adaptation and no adaptation for some cities. For
Ljubljana and London, AMort-CC was 36 and 19 deaths per 100,000,
respectively, with no adaptation and 2 and 6 deaths per 100,000, respec-
tively, with adaptation (Figure 2). This is equivalent to differences of
94% (Ljubljana) and 68% (London) between adaptation and no adapta-
tion (Figure 3). However, for other cities, the use of analog ERFs
resulted in greater AMort-CC with adaptation than without: for exam-
ple, for Stockholm, Turin, and Valencia, where AMort-CC was 16, 11,
and 13 deaths per 100,000, respectively, without adaptation and 20, 20,
and 92 deaths per 100,000, respectively, with adaptation (Figure 2).

Table 5. Statistical ranges (maximum minus minimum values of the impact distribution) and spread (minimum to maximum values that constitute the range, in
parentheses) of AMort-CC impacts (per 100,000) due to adaptation modeling uncertainty (calculated from the largest range in impacts from all the adaptation
modeling methods investigated), climate modeling uncertainty (spread and range for 5 GCMs with no adaptation), and emissions uncertainty (spread and range
for two RCPs with one GCM and with no adaptation).

Range in impacts due to adaptation Adaptation modeling method that Range in impacts due to climate Range in impacts due to

City modeling uncertainty” results in largest spread modeling uncertainty emissions uncertainty
Athens 88 [(—4)—84] Thresh % + Slope 46 (46-92) 54 (30-84)
Barcelona 38 [(—2)-36] Thresh % + Slope 24 (18-42) 25(11-36)
Budapest 80 [(— 1)-79] Thresh % + Slope 57 (39-96) 52(27-79)
Helsinki 27 (0-27)° Thresh % + Slope 30 (7-37) 21 (6-27)
Ljubljana 35 (1-36) Thresh % + Slope 23 (13-36) 26 (10-36)
London 20[(-1)-19] Thresh % + Slope 19 (5-24) 15 (4-19)
Milan 74[(-2)-172] Thresh % + Slope 41 (31-72) 55 (17-72)
Paris 35[(—2)-33] Thresh % + Slope 29 (16-45) 25(8-33)
Prague 56 (0-56) Thresh % + Slope 34 (22-56) 38 (18-56)
Rome 80 [(—=3)-77] Thresh % + Slope 45 (37-82) 51 (26-77)
Stockholm 16 (0-16) Thresh % + Slope 16 (4-20) 11(5-16)
Turin 11(0-11) Thresh % + Slope 9(2-11) 11(0-11)
Valencia 79 (13-92) Analog 8 (7-15) 9(4-13)
Zurich 16 (0-16) Thresh % + Slope 9 (7-16) 12 (4-16)

Note: The range values describe the width of each bar in Figure 2. AMort-CC, heat-related mortality rate attributable to climate change; GCM, Global Climate Model; RCP,
Representative Concentration Pathway; Thresh, threshold.

“Negative values denote that fewer deaths occur in the future with climate change than in the present-day.

The range in impacts due to adaptation modeling uncertainty is smaller than the range due to either climate modeling or emissions uncertainty.
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Comparison of Adaptation, Emissions, and Climate
Modeling Uncertainty

Table 5 shows the effects of adaptation, emissions, and climate
modeling uncertainties on projected impacts. It compares the
largest range in impacts from all the adaptation modeling meth-
ods we investigated with @) the range in impacts from using 1
GCM run under two emissions scenarios without adaptation, and
b) with the range in impacts from 5 GCMs run under one emis-
sions scenario without adaptation. The range in impacts that arose
from adaptation modeling uncertainty was greater than the range
that arose because of emissions uncertainty for every city. It was
also greater than the range that arose because of climate modeling
uncertainty for 13 of 14 cities. These differences were consider-
able in some cases; for example, for Athens, Budapest, and
Rome, the ranges due to adaptation uncertainty were 88, 80, and
80 deaths per 100,000, respectively, whereas for climate model-
ing uncertainty, they were 46, 57, and 45 deaths per 100,000
respectively.

The large ranges due to adaptation uncertainty were associated
with a relative threshold shift combined with a reduction in ERF
slope in all but one city (Valencia) (Table 5). Application of some
of the other methods also resulted in ranges that were larger than
those from climate modeling and emissions uncertainty (denoted
by Ay in Figure 2) because for 12 cities, A was >2, with such cases
usually involving the relative threshold shift method.

For all cities, the range in impacts from using an absolute
threshold shift was smaller than the range from using multiple
GCMs and/or RCPs (Figure 2). The ranges were larger when
absolute threshold shifts were combined with reductions in ERF
slope, but apart from three cities (Athens, Barcelona, and
Valencia) the ranges were smaller than those from using multiple
GCMs or RCPs. For all cities except Ljubljana and Valencia, the
range in impacts from using analog ERFs was smaller than the
range from using multiple GCMs and multiple RCPs (Figure 2).

Discussion

Application of Linear ERFs

We used city-specific ERFs that described linear relationships
between daily apparent temperature and mortality in the form of
a slope. They were derived from a set of nonlinear curves devel-
oped from a flexible parametric approach presented by Baccini
et al. (2008) (their Figure 1). Baccini et al. (2008) summarized
their nonlinear relationships by two linear terms constrained to
join at a common point (the city-specific thresholds). They
obtained the thresholds by the maximum likelihood approach
proposed by Muggeo (2003) so that a linear slope above the
threshold was used as an effect estimate for each city; these were
used as the ERFs in our study. As others have noted (Kingsley
et al. 2016), the summarized association between mortality and
temperature per increment in temperature (1°C in this case) dif-
fers depending on where along the exposure-response curve one
starts for nonlinear exposure—response relationships such as those
defined by Baccini et al. (2008). For a highly nonlinear curve, the
strength of the temperature—mortality response might be higher
further along the curve where its gradient is larger (i.e., at higher
temperatures) than it might be closer to the threshold where the
gradient is smaller. Baccini et al. (2008) started from the thresh-
old temperature when computing their effect estimates, so if their
curves were highly nonlinear, it would be fair to assume that we
under-estimated the climate change effects of temperature on
heat-related mortality. However, visual inspection of the curves
presented by Baccini et al. (2008) suggests that the curves are
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broadly linear beyond the threshold temperatures. Therefore, we
did not calculate climate change impacts with nonlinear ERFs.

A goal of our study was to provide a point of reference to the
sensitivity of climate change impacts to different adaptation mod-
eling methods for researchers conducting climate change impact
assessments for heat-related mortality. Considering that almost
all previous assessments used linear ERFs derived from estimates
of RR for an increase in temperature above a specific value
(Baccini et al. 2011; Hajat et al. 2014; Peng et al. 2011; Petkova
et al. 2013; Schwartz et al. 2015; Vardoulakis et al. 2014; Wu
et al. 2014), we also used linear ERFs because it is likely that
future studies will do so as well. Thus, our conclusions should be
readily interpretable by the community. This is another reason
why we did not calculate impacts with nonlinear ERFs. In addi-
tion, the application of linear ERFs makes it straightforward to
apply simple changes in slope and location to represent adapta-
tion. The potential gains of using nonlinear associations would be
outweighed by the increased complexity in implementing adapta-
tion options.

The algorithm described by Muggeo (2003) and used by
Baccini et al. (2008) for the threshold temperature estimation can
be unstable. This instability means that the linear relationship we
used can be sensitive to the threshold. We did not investigate the
sensitivity of our estimated impacts to the threshold because our
goal was to demonstrate the sensitivity of impacts to adaptation
methods. The drawback of this algorithm may be accounted for
by using different starting points for each temperature and lag
structure when running the algorithm (Rodopoulou et al. 2015).

Our projected impacts are not only a function of the projected
climate but also of the baseline mortality rate, which appears in
Equation 5. The sensitivity of impacts to baseline mortality val-
ues has been noted by others (Baccini et al. 2011). We controlled
for this in our experimental design by holding the baseline mor-
tality rate constant between present and future periods, in line
with others (e.g., Gosling et al. 2012; Peng et al. 2011; Petkova
et al. 2013; Wu et al. 2014), to isolate the effects of climate mod-
eling, emissions, and adaptation modeling uncertainties on the
impact estimates. Changing the baseline mortality rates between
the future and the present would affect the projected absolute
number of deaths because some future deaths would be attribut-
able to changes in the baseline mortality rate, but it would not
affect the mortality rates attributable to climate change
(AMort-CC).

Some studies have calculated the baseline mortality rate either
from daily mortality excluding deaths attributable to temperature
(Hajat et al. 2014) or from mortality on nonheatwave days (Peng
et al. 2011; Wu et al. 2014), meaning that the baseline mortality
rate is representative of the mortality rate of the exposed popula-
tion at the threshold temperature. Others have calculated the
baseline mortality rate from the total number of deaths (Baccini
et al. 2011; Huynen and Martens 2015; Petkova et al. 2013;
Schwartz et al. 2015; Vardoulakis et al. 2014), which means that
it is representative of the whole exposed population year-round
(i.e., at the threshold temperature and at temperatures above the
threshold). We employed the last approach simply because it is
more commonly adopted, but we acknowledge that it would be
useful in future work to investigate quantitatively the effect of
calculating the baseline mortality rate with different methods.

Impacts Are Highly Sensitive to Adaptation
Modeling Methods

Our first objective was to compare the range in projected impacts
that arises from using different adaptation modeling methods. All
previous assessments of the impacts of climate change on heat-
related mortality have modeled adaptation with only one method
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(e.g., Hayhoe et al. 2004; Honda et al. 2014b; Jenkins et al. 2014;
Knowlton et al. 2007; Mills et al. 2014; Zacharias et al. 2015),
excluded it altogether (e.g., Baccini et al. 2011; Hajat et al. 2014;
Kingsley et al. 2016; Peng et al. 2011; Vardoulakis et al. 2014;
Wu et al. 2014), or, in one case, provided a comparison of
impacts using only a subset of the range of modeling methods
available (Huynen and Martens 2015). Here, for the first time, we
have used multiple adaptation modeling methods with different
assumed magnitudes of adaptation, and we have shown that the
ranges in projected impacts vary significantly according to the ad-
aptation modeling method that is employed.

This significant sensitivity is well illustrated with an example.
Electing to model adaptation with a 4°C absolute threshold shift
for Milan would suggest that the least effect climate change will
have on heat-related mortality is an additional 44 heat-related
deaths (per 100,000) each year compared with the present day
(Figure 2). However, modeling adaptation with a different
method (relative threshold shift with a reduction in ERF slope)
suggests that there will be 2 (per 100,000) fewer deaths each year
with climate change than in the present day. This magnitude of
impact is only observed if this specific adaptation modeling
method is applied. Such an effect does not occur with any of the
other adaptation modeling methods, nor does it occur under a
low-emissions (RCP2.6) scenario or when multiple GCMs are
considered without adaptation, wherein the smallest effects cli-
mate change will have on heat-related mortality are an additional
17 and 31 annual heat-related deaths (per 100,000), respectively.

To this end, our results highlight that forthcoming studies
need to carefully consider the methods that they use to model ad-
aptation because we have shown that the range in projected
impacts is highly sensitive to the adaptation modeling method
employed.

We observed that increases in the magnitude of each adapta-
tion modeling method (apart from analog ERF) generally had lin-
ear effects on AMort-CC that were similar across cities (Figure
2). This finding suggests that the sensitivity of projected heat-
related mortality impacts to adaptation modeling method is likely
to hold for other cities across the globe.

Comparing Uncertainty from Adaptation Uncertainty with
that from Climate Modeling and Emissions

Our second objective was to compare the range in impacts arising
from adaptation uncertainty to the ranges from climate modeling
and emissions uncertainty. We found that adaptation modeling
uncertainty results in large ranges of projected heat-related mor-
tality impacts. In 13 of 14 cities, adaptation modeling uncertainty
resulted in ranges larger than those caused by both climate mod-
eling and emissions uncertainty. This occurred largely as a result
of modeling adaptation with relative threshold shifts. When other
methods were used, the ranges were still large but typically
smaller than those from climate modeling and emissions uncer-
tainty. Our results confirm those of other studies that have shown
large differences in impacts between adaptation and no adaptation
(e.g., Honda et al. 2014a; Jenkins et al. 2014; Petkova et al. 2016;
Sheridan et al. 2012), but here, we have provided additional
understanding by specifically showing that adaptation uncertainty
can have a greater effect on heat-related mortality rates attribut-
able to climate than climate modeling and emissions uncertainty.

Recommended Adaptation Modeling Methods for
Future Assessments

Our third objective was to recommend one or several methods to
use in future impact assessments. Our results led us to advise that
future assessments should carefully consider the plausibility of
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the adaptation modeling methods they employ when projecting
heat-related mortality.

Absolute threshold shifts are a popular method for modeling
adaptation in impact studies, but they have always been shifted
by between 1°C and 4°C without being informed by epidemio-
logical evidence of observed threshold shifts (Dessai 2003;
Gosling et al. 2009; Huynen and Martens 2015; Jenkins et al.
2014). However, there is growing evidence to support the magni-
tude of these shifts. Absolute threshold temperatures increased by
1.5-3°C between 1972 and 1994 in Tokyo (Honda et al. 2006),
by ~ 10°C between 1901 and 2009 in Stockholm (Astrom et al.
2016), and by 0.7°C from 1968-1981 to 1996-2009 in France
(Todd and Valleron 2015). Although observed increases in
thresholds vary between studies and have occurred over different
time periods, and although thresholds have decreased in a limited
number of locations (Miron et al. 2007), we argue that it is rea-
sonable in light of the epidemiological evidence to assume that
ERFs might shift by between 1°C and 4°C in the future. Thus,
we recommend this method for application in future impact stud-
ies. However, we also encourage further epidemiological studies
that investigate the magnitude of historical shifts in absolute
threshold temperatures; in addition, we recommend improved
empirical assessment of the factors that drive such shifts in sensi-
tivity and their associated costs.

Users of the relative threshold method (Honda et al. 2014a;
Honda et al. 2014b; Zacharias et al. 2015) justify its application
with reference to the observation that threshold temperatures can
generally be estimated using the 80-85th percentile of daily max-
imum temperature in multiple locations in Japan (Honda et al.
2007; Honda et al. 2014b). However, relative thresholds can vary
over time (Astrom et al. 2016) and between countries (Gasparrini
et al. 2015a), which leads to concerns about the rationale behind
this method. The method has also been criticized as inappropriate
for projecting climate change impacts because the relative thresh-
old may not be a valid proxy for the absolute threshold in the
future (Astrom et al. 2016). In addition, referring to “100% adap-
tation” (Honda et al. 2014a) is somewhat misleading because we
have shown that climate change still causes an increase in heat-
related mortality compared with the present day under this
assumption. This is because the shape and the location of the
future temperature distribution change, but a relative threshold
shift of 100% does not entirely account for the change in shape.
In light of these limitations, the method should be applied with
caution, and relative threshold shifts of 100% should be carefully
considered with respect to their plausibility.

Our results confirm criticisms that impacts based on the ana-
log ERF method may be biased if social, economic, and demo-
graphic characteristics related to mortality differ greatly between
city pairs (Huang et al. 2011). Application of this method in our
study did not always have the effect of reducing mortality relative
to no adaptation (e.g., for Milan, Stockholm, Turin, Valencia,
and Zurich). One reason for this result is that the method is sensi-
tive to the “matching” of one city to another; some matches were
better than others. Another reason is that the cities were matched
based only upon their daily ATy« distributions and not on the
socioeconomic characteristics that contribute to the thresholds
and slopes of the city-specific ERFs (Baccini et al. 2008). The
method might work well for locations that share similar socioeco-
nomic characteristics, but not otherwise. Therefore, we recom-
mend that future impact studies consider whether it is plausible
to apply the analog ERF method when taking into account simi-
larities and differences between the socioeconomic characteristics
of the different locations under investigation.

We are aware of only one impact study that has modeled ad-
aptation by reducing the slope of the ERF (Huynen and Martens
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2015), which is surprising considering the growing body of epi-
demiological evidence that generally shows a decreasing sensitiv-
ity to heat over time (Barnett 2007; Bobb et al. 2014; Gasparrini
et al. 2015a; Guo et al. 2012; Ha and Kim 2013; Petkova et al.
2014a; Schwartz et al. 2015; Sheridan et al. 2008). Along with
others (Huang et al. 2011), we see this method as showing signifi-
cant potential for application in impact studies.

Overall, we recommend that future impact studies model ad-
aptation by absolute threshold shifts and reductions in ERF slope.
This should, however, not be done arbitrarily. We suggest that
researchers first check the validity of the magnitude of adaptation
assumed by exploring the evidence for, and magnitude of, histori-
cal adaptation in the chosen location of investigation. This infor-
mation should yield quantification of shifts in the threshold
temperature and declines in slope over the historical period. The
analysis should be performed using as long a time series of daily
data as possible, ideally spanning ~ 100y because the most com-
pelling evidence for adaptation over the historical period is from
studies that have analyzed data sets of this length (Arbuthnott
et al. 2016; Astrom et al. 2013; Carson et al. 2006; Ha and Kim
2013; Petkova et al. 2014a). If adaptation is not observed over
the historical period, if there is a lack of available data, or a com-
bination of the two, then it should not be assumed that future ad-
aptation is impossible. Rather, the reasons for this apparent lack
of adaptation (or data) should be investigated, and adaptation
modeling should be undertaken. We recommend applying a shift
in absolute threshold between 1°C and 4°C in such cases because
this is broadly within the range of shifts in threshold temperature
observed for some locations (Astrom et al. 2016; Honda et al.
2006; Todd and Valleron 2015). However, the results should be
interpreted within the knowledge that historical adaptation has
not occurred, that there were insufficient available data to observe
it, or both. Analysis of historical trends in adaptation will indicate
whether both the threshold and slope have changed over time, or
whether only one has changed. This in turn should inform which
method to use in the climate change impact assessment.

We assumed in our comparison that the methods employed in
previous studies for particular locations could readily be trans-
ferred to different locations. Previous studies that have used these
methods have also made this assumption. Apart from the analog
ERF method, which we have shown may not be a plausible
method for some locations, our results suggest no reason why the
methods cannot be applied to locations that are different from
where they have been used previously. However, as we have al-
ready noted, when using these methods for a new location,
researchers should check the validity of the assumed magnitude
of adaptation by exploring historical adaptation trends for that
location. Although our recommendation is based upon an analy-
sis of existing methods, we also encourage the development of
new methods for modeling adaptation across large populations.
These new methods might include shifts and declines in slope
where the magnitudes vary seasonally or interannually to reflect
the lead-in times that typify decreasing sensitivity to heat over
the historical period (Arbuthnott et al. 2016; Petkova et al. 2016).
It would also be worthwhile to attempt to separate the beneficial
effects of autonomous adaptation from those of planned adapta-
tion (Petkova et al. 2014b) because all of the methods we
employed combine the two. In practical terms, it is likely that the
two mechanisms will operate at different magnitudes, heterogene-
ously across locations, and at different spatial and temporal
scales.

Conclusions

To the best of our knowledge, we have conducted the first climate
change impact assessment for heat-related mortality that
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systematically compares projections using the six main methods
for modeling adaptation that have been employed in previous
studies.

We found that on average across all 14 cities, the range of the
difference (percent) in impacts between including and excluding
adaptation, independent of climate modeling and emissions uncer-
tainty, can be as low as 28% with one method (reduction in slope of
the ERF) and up to 103% with another (relative threshold shift com-
bined with a reduction in slope of the ERF). Furthermore, we have
shown thatin 13 of the 14 cities, the ranges in projected impacts due
to adaptation uncertainty are larger than those associated with cli-
mate modeling and emissions uncertainty.

Therefore, we strongly encourage an advancement beyond the
prevailing methodological approach adopted in most impact stud-
ies, which has traditionally focused on accounting for climate
modeling and/or emissions uncertainties at the expense of ignor-
ing adaptation (e.g., Baccini et al. 2011; Hajat et al. 2014;
Kingsley et al. 2016; Peng et al. 2011; Vardoulakis et al. 2014;
Wau et al. 2014). This status quo has developed from an inherent
assumption that the most important uncertainties to account for
are climate modeling and emissions uncertainty because they
have been shown to result in large ranges in impacts (e.g.,
Gosling et al. 2012; Hajat et al. 2014; Peng et al. 2011; Zacharias
et al. 2015). Our results stand in stark contrast.

Therefore, researchers should carefully consider how to
model adaptation. We call for a move towards impact assess-
ments that explicitly report the range in impacts from using
multiple GCMs, emissions scenarios, and different adaptation
assumptions to provide a more comprehensive assessment of
uncertainty. This will in turn provide policy- and decision makers
with a more holistic picture of potential climate change impacts.
Ideally, this will help decision makers adopt the appropriate scale
and combination of different investments and interventions
required for effective adaptation to climate change.

We treated adaptation in a purely statistical sense without
consideration of the specific programs, strategies, and behavioral
changes that are ultimately driving the adaptation assumptions
we applied. More thorough and widespread evaluation of inter-
vention measures will be paramount in closing this loop
(Boeckmann and Rohn 2014). Therefore, in parallel to our rec-
ommendations for future research, we acknowledge that more
evidence should be generated on the costs and effectiveness of
the large array of adaptation mechanisms that underlie the model-
ing assumptions we applied here, from individual to technologi-
cal to health system levels. This additional information will
enable policy- and decision makers to focus on the most cost-
effective interventions and will enable researchers to base their
adaptation methods on more robust data.

Acknowledgments
We thank E. Gosling for her help in producing the figures. S.N.
G. was funded by the European Commission Joint Research
Centre (contract 154858-2015 A08-GB, “Comparative Study on
Model-ling Heat-related Mortality Adaptation to Climate
Change”). J.L. received funding from the National Natural Science
Foundation of China (41625001).

The views expressed are purely those of the authors and may
not in any circumstances be regarded as stating an official
position of the European Commission.

References

Arbuthnott K, Hajat S, Heaviside C, Vardoulakis S. 2016. Changes in population sus-
ceptibility to heat and cold over time: assessing adaptation to climate change.
Environ Health 15 Suppl1:S33, PMID: 26961541, https://doi.org/10.1186/s12940-
016-0102-7.

087008-12


https://www.ncbi.nlm.nih.gov/pubmed/26961541
https://doi.org/10.1186/s12940-016-0102-7
https://doi.org/10.1186/s12940-016-0102-7

Astrém DO, Forsherg B, Edvinsson S, Rocklov J. 2013. Acute fatal effects of short-
lasting extreme temperatures in Stockholm, Sweden: Evidence across a cen-
tury of change. Epidemiology 24(6):820-829, PMID: 24051892, https://doi.org/10.
1097/01.ede.0000434530.62353.0b.

Astrém DO, Tornevi A, Ebi KL, Rocklév J, Forsberg B. 2016. Evolution of minimum
mortality temperature in Stockholm, Sweden, 1901-2009. Environ Health
Perspect 124(6):740-744, PMID: 26566270, https://doi.org/10.1289/ehp.1509692.

Baccini M, Biggeri A, Accetta G, Kosatsky T, Katsouyanni K, Analitis A, et al. 2008.
Heat effects on mortality in 15 European cities. Epidemiology 19(5):711-719,
PMID: 18520615, https://doi.org/10.1097/EDE.0b013e318176bfcd.

Baccini M, Kosatsky T, Analitis A, Anderson HR, D'Ovidio M, Menne B, et al. 2011.
Impact of heat on mortality in 15 European cities: attributable deaths under dif-
ferent weather scenarios. J Epidemiol Community Health 65(1):64-70, PMID:
19858539, https://doi.org/10.1136/jech.2008.085639.

Barnett AG. 2007. Temperature and cardiovascular deaths in the US elderly:
changes over time. Epidemiology 18(3):369-372, PMID: 17435447, https://doi.org/
10.1097/01.ede.0000257515.34445.a0.

Bobb JF, Peng RD, Bell ML, Dominici F. 2014. Heat-related mortality and adaptation
to heat in the United States. Environ Health Perspect 122(8):811-816, PMID:
24780880, https://doi.org/10.1289/ehp.1307392.

Boeckmann M, Rohn I. 2014. Is planned adaptation to heat reducing heat-related
mortality and illness? A systematic review. BMC Public Health 14:1112, PMID:
25349109, https://doi.org/10.1186/1471-2458-14-1112.

Carson C, Hajat S, Armstrong B, Wilkinson P. 2006. Declining vulnerability to
temperature-related mortality in London over the 20th century. Am J Epidemiol
164(1):77-84, PMID: 16624968, https://doi.org/10.1093/aje/kw;j147.

Davis RE, Knappenberger PC, Michaels PJ, Novicoff WM. 2003. Changing heat-
related mortality in the United States. Environ Health Perspect 111(14):1712—
1718, PMID: 14594620, https://doi.org/10.1289/ehp.6336.

Dessai S. 2003. Heat stress and mortality in Lisbon Part Il. An assessment of the
potential impacts of climate change. Int J Biometeorol 48:37-44, PMID:
12750971, https://doi.org/10.1007/s00484-003-0180-4.

Gasparrini A, Guo Y, Hashizume M, Kinney PL, Petkova EP, Lavigne E, et al. 2015a.
Temporal variation in heat-mortality associations: a multicountry study.
Environ Health Perspect 123(11):1200-1207, PMID: 25933359, https://doi.org/10.
1289/ehp.1409070.

Gasparrini A, Guo Y, Hashizume M, Lavigne E, Zanobetti A, Schwartz J. 2015b.
Mortality risk attributable to high and low ambient temperature: a multicountry
observational study. Lancet 123(9991):1200-1207, PMID: 26003380, https://doi.org/
10.1016/S0140-6736(14)62114-0.

Gosling SN, McGregor GR, Lowe JA. 2009. Climate change and heat-related
mortality in six cities Part 2: Climate model evaluation and projected impacts
from changes in the mean and variability of temperature with climate
change. Int J Biometeorol 53(1):31-51, PMID: 19052780, https://doi.org/10.
1007/s00484-008-0189-9.

Gosling SN, McGregor GR, Lowe JA. 2012. The benefits of quantifying climate
model uncertainty in climate change impacts assessment: an example with
heat-related mortality change estimates. Climatic Change 112(2):217-231,
https://doi.org/10.1007/s10584-011-0211-9.

Guo Y, Barnett AG, Tong S. 2012. High temperatures-related elderly mortality varied
greatly from year to year: important information for heat-warning systems. Sci
Rep 2:830, PMID: 23145322, https://doi.org/10.1038/srep00830.

Ha J, Kim H. 2013. Changes in the association between summer temperature and
mortality in Seoul, South Korea. Int J Biometeorol 57(4):535-544, PMID:
22872184, https://doi.org/10.1007/s00484-012-0580-4.

Hajat S, Vardoulakis S, Heaviside C, Eggen B. 2014. Climate change effects on
human health: projections of temperature-related mortality for the UK during
the 2020s, 2050s and 2080s. J Epidemiol Community Health. 68(7):641-648,
PMID: 24493740, https://doi.org/10.1136/jech-2013-202449.

Hales S, Kovats RS, Lloyd S, Campbell-Lendrum D, eds. 2014. Quantitative risk
assessment of the effects of climate change on selected causes of death,
2030s and 2050s. Geneva, Switzerland:World Health Organization (WHO).

Hayhoe K, Cayan D, Field CB, Frumhoff PC, Maurer EP, Miller NL, et al. 2004. Emissions
pathways, climate change, and impacts on California. Proc Natl Acad Sci USA
101(34):12422-12427, PMID: 15314227, https://doi.org/10.1073/pnas.0404500101.

Hempel S, Frieler K, Warszawski L, Schewe J, Piontek F. 2013. A trend-preserving bias
correction-the ISI-MIP approach. Earth Syst Dynam 4:219-236, https://doi.org/10.
5194/esd-4-219-2013.

HondaY, Ono M, Kabuto M. 2006. Do we adapt to a new climate as the globe warms?
Epidemiology 17(6):S204, https://doi.org/10.1097/00001648-200611001-00519.

Honda Y, Kabuto M, Ono M, Uchiyama I. 2007. Determination of optimum daily max-
imum temperature using climate data. Environ Health Prev Med 12(5):209-216,
PMID: 21432083, https://doi.org/10.1265/ehpm.12.209.

Honda Y, Kondo M, McGregor G, Kim H, Guo YL, Hales S, et al. 2014a. Heat-related
mortality. In: Quantitative risk assessment of the effects of climate change on

Environmental Health Perspectives

selected causes of death, 2030s and 2050s. Hales S, Kovats RS, Lloyd S,
Campbell-Lendrum D, eds. Geneva, Switzerland:WHO, 17-26.

Honda Y, Kondo M, McGregor G, Kim H, Guo YL, Hijioka Y, et al. 2014b. Heat-related
mortality risk model for climate change impact projection. Environ Health Prev
Med 19(1):56-63, PMID: 23928946, https://doi.org/10.1007/s12199-013-0354-6.

Hondula DM, Balling RC, Vanos JK, Georgescu M. 2015. Rising temperatures,
human health, and the role of adaptation. Curr Clim Change Rep 1(3):144-154,
https://doi.org/10.1007/s40641-015-0016-4.

Huang C, Barnett AG, Wang X, Vaneckova P, FitzGerald G, Tong S. 2011. Projecting
future heat-related mortality under climate change scenarios: a systematic
review. Environ Health Perspect 119(12):1681-1690, PMID: 21816703, https:/doi.org/
10.1289/ehp.1103456.

Huynen MM, Martens P. 2015. Climate change effects on heat- and cold-related mor-
tality in the Netherlands: a scenario-based integrated environmental health impact
assessment. [JERPH 12(10):13295-13320, https://doi.org/10.3390/ijerph121013295.

Jenkins K, Hall J, Glenis V, Kilsby C, McCarthy M, Goodess C, et al. 2014. Probabilistic
spatial risk assessment of heat impacts and adaptations for London. Climatic
Change 124(1-2):105-117, https://doi.org/10.1007/s10584-014-1105-4.

Kingsley S, Eliot M, Gold J, Vanderslice R, Wellenius G. 2016. Current and projected
heat-related morbidity and mortality in Rhode Island. Environ Health Perspect
124(4):460-467, PMID: 26251954, https://doi.org/10.1289/ehp.1408826.

Kinney PL, 0'Neill MS, Bell ML, Schwartz J. 2008. Approaches for estimating effects
of climate change on heat-related deaths: challenges and opportunities. Environ
SciPolicy 11(1):87-96, https://doi.org/10.1016/j.envsci.2007.08.001.

Knowlton K, Lynn B, Goldberg RA, Rosenzweig C, Hogrefe C, Rosenthal JK, et al.
2007. Projecting heat-related mortality impacts under a changing climate in the
New York City region. Am J Public Health 97(11):2028-2034, https://doi.org/10.
2105/AJPH.2006.102947.

Martens WJM. 1998. Climate change, thermal stress and mortality changes. Soc
Sci Med 46(3):331-344, PMID: 9460815.

Martin SL, Cakmak S, Hebbern CA, Avramescu M-L, Tremblay N. 2012. Climate
change and future temperature-related mortality in 15 Canadian cities. Int J
Biometeorol 56(4):605-619, PMID: 21597936, https://doi.org/10.1007/s00484-011-
0449-y.

Massey FJ. 1951. The Kolmogorov-Smirnov test for goodness of fit. J Am Stat
Assoc 46(253):68—78, https://doi.org/10.2307/2280095.

McMichael A, Woodruff R, Hales S. 2006. Climate change and human health: pres-
ent and future risks. Lancet 367:859-869, PMID: 16530580, https://doi.org/10.
1016/S0140-6736(06)68079-3.

Mills D, Schwartz J, Lee M, Sarofim M, Jones R, Lawson M. 2014. Climate change
impacts on extreme temperature mortality in select metropolitan areas in the
United States. Climatic Change 131(1):83-95, https://doi.org/10.1007/s10584-014-
1154-8.

Miron 1J, Criado-Alvarez JJ, Diaz J, Linares C, Mayoral S, Montero JC. 2007. Time
trends in minimum mortality temperatures in Castile-La Mancha (Central
Spain): 1975-2003. Int J Biometeorol 52(4):2291-299, https://doi.org/10.1007/
s00484-007-0123-6.

Muggeo VMR. 2003. Estimating regression models with unknown break-points.
Stat Med 22(19):3055-3071, PMID: 12973787, https://doi.org/10.1002/sim.1545.
0'Neill BC, Kriegler E, Riahi K, Ebi KL, Hallegatte S, Carter TR, et al. 2014. A new
scenario framework for climate change research: the concept of shared socio-
economic pathways. Climatic Change 122(3):387-400, https://doi.org/10.1007/

510584-013-0906-1.

Peng RD, Bobb JF, Tebaldi C, McDaniel L, Bell ML, Dominici F. 2011. Toward a quanti-
tative estimate of future heat wave mortality under global climate change.
Environ Health Perspect 119(5):701-706, PMID: 21193384, https://doi.org/10.1289/
ehp.1002430.

Petitti DB, Hondula DM, Yang S, Harlan SL, Chowell G. 2016. Multiple trigger points
for quantifying heat-health impacts: new evidence from a hot climate. Environ
Health Perspect 124(2):176-183, PMID: 26219102, https://doi.org/10.1289/ehp.
1409119.

Petkova EP, Horton RM, Bader DA, Kinney PL. 2013. Projected heat-related mortal-
ity in the U.S. urban northeast. Int J Environ Res Public Health 10(12):6734—
6747, PMID: 24300074, https://doi.org/10.3390/ijerph10126734.

Petkova EP, Gasparrini A, Kinney P. 2014a. Heat and mortality in New York City
since the beginning of the 20th century. Epidemiology 25(24):554-560, PMID:
24802366, https://doi.org/10.1097/EDE.0000000000000123.

Petkova EP, Morita H, Kinney PL. 2014b. Health impacts of heat in a changing cli-
mate: how can emerging science inform urban adaptation planning? Curr
Epidemiol Rep 1(2):67-74, https://doi.org/10.1007/s40471-014-0009-1.

Petkova EP, Vink JK, Horton RM, Gasparrini A, Bader DA, Francis JD, Kinney PL.
2017. Towards more comprehensive projections of urban heat-related mortality:
estimates for New York City under multiple population, adaptation, and climate
scenarios. Environ Health Perspect 125(1):47-55, PMID: 27337737, https://doi.org/
10.1289/EHP166.

087008-13


https://www.ncbi.nlm.nih.gov/pubmed/24051892
https://doi.org/10.1097/01.ede.0000434530.62353.0b
https://doi.org/10.1097/01.ede.0000434530.62353.0b
https://www.ncbi.nlm.nih.gov/pubmed/26566270
https://doi.org/10.1289/ehp.1509692
https://www.ncbi.nlm.nih.gov/pubmed/18520615
https://doi.org/10.1097/EDE.0b013e318176bfcd
https://www.ncbi.nlm.nih.gov/pubmed/19858539
https://doi.org/10.1136/jech.2008.085639
https://www.ncbi.nlm.nih.gov/pubmed/17435447
https://doi.org/10.1097/01.ede.0000257515.34445.a0
https://doi.org/10.1097/01.ede.0000257515.34445.a0
https://www.ncbi.nlm.nih.gov/pubmed/24780880
https://doi.org/10.1289/ehp.1307392
https://www.ncbi.nlm.nih.gov/pubmed/25349109
https://doi.org/10.1186/1471-2458-14-1112
https://www.ncbi.nlm.nih.gov/pubmed/16624968
https://doi.org/10.1093/aje/kwj147
https://www.ncbi.nlm.nih.gov/pubmed/14594620
https://doi.org/10.1289/ehp.6336
https://www.ncbi.nlm.nih.gov/pubmed/12750971
https://doi.org/10.1007/s00484-003-0180-4
https://www.ncbi.nlm.nih.gov/pubmed/25933359
https://doi.org/10.1289/ehp.1409070
https://doi.org/10.1289/ehp.1409070
https://www.ncbi.nlm.nih.gov/pubmed/26003380
https://doi.org/10.1016/S0140-6736(14)62114-0
https://doi.org/10.1016/S0140-6736(14)62114-0
https://www.ncbi.nlm.nih.gov/pubmed/19052780
https://doi.org/10.1007/s00484-008-0189-9
https://doi.org/10.1007/s00484-008-0189-9
https://doi.org/10.1007/s10584-011-0211-9
https://www.ncbi.nlm.nih.gov/pubmed/23145322
https://doi.org/10.1038/srep00830
https://www.ncbi.nlm.nih.gov/pubmed/22872184
https://doi.org/10.1007/s00484-012-0580-4
https://www.ncbi.nlm.nih.gov/pubmed/24493740
https://doi.org/10.1136/jech-2013-202449
https://www.ncbi.nlm.nih.gov/pubmed/15314227
https://doi.org/10.1073/pnas.0404500101
https://doi.org/10.5194/esd-4-219-2013
https://doi.org/10.5194/esd-4-219-2013
https://doi.org/10.1097/00001648-200611001-00519
https://www.ncbi.nlm.nih.gov/pubmed/21432083
https://doi.org/10.1265/ehpm.12.209
https://www.ncbi.nlm.nih.gov/pubmed/23928946
https://doi.org/10.1007/s12199-013-0354-6
https://doi.org/10.1007/s40641-015-0016-4
https://www.ncbi.nlm.nih.gov/pubmed/21816703
https://doi.org/10.1289/ehp.1103456
https://doi.org/10.1289/ehp.1103456
https://doi.org/10.3390/ijerph121013295
https://doi.org/10.1007/s10584-014-1105-4
https://www.ncbi.nlm.nih.gov/pubmed/26251954
https://doi.org/10.1289/ehp.1408826
https://doi.org/10.1016/j.envsci.2007.08.001
https://doi.org/10.2105/AJPH.2006.102947
https://doi.org/10.2105/AJPH.2006.102947
https://www.ncbi.nlm.nih.gov/pubmed/9460815
https://www.ncbi.nlm.nih.gov/pubmed/21597936
https://doi.org/10.1007/s00484-011-0449-y
https://doi.org/10.1007/s00484-011-0449-y
https://doi.org/10.2307/2280095
https://www.ncbi.nlm.nih.gov/pubmed/16530580
https://doi.org/10.1016/S0140-6736(06)68079-3
https://doi.org/10.1016/S0140-6736(06)68079-3
https://doi.org/10.1007/s10584-014-1154-8
https://doi.org/10.1007/s10584-014-1154-8
https://doi.org/10.1007/s00484-007-0123-6
https://doi.org/10.1007/s00484-007-0123-6
https://www.ncbi.nlm.nih.gov/pubmed/12973787
https://doi.org/10.1002/sim.1545
https://doi.org/10.1007/s10584-013-0906-1
https://doi.org/10.1007/s10584-013-0906-1
https://www.ncbi.nlm.nih.gov/pubmed/21193384
https://doi.org/10.1289/ehp.1002430
https://doi.org/10.1289/ehp.1002430
https://www.ncbi.nlm.nih.gov/pubmed/26219102
https://doi.org/10.1289/ehp.1409119
https://doi.org/10.1289/ehp.1409119
https://www.ncbi.nlm.nih.gov/pubmed/24300074
https://doi.org/10.3390/ijerph10126734
https://www.ncbi.nlm.nih.gov/pubmed/24802366
https://doi.org/10.1097/EDE.0000000000000123
https://doi.org/10.1007/s40471-014-0009-1
https://www.ncbi.nlm.nih.gov/pubmed/27337737
https://doi.org/10.1289/EHP166
https://doi.org/10.1289/EHP166

Riahi K, Rao S, Krey V, Cho C, Chirkov V, Fischer G, et al. 2011. RCP 8.5—A scenario
of comparatively high greenhouse gas emissions. Climatic Change 109:33-57,
https://doi.org/10.1007/s10584-011-0149-y.

Rodopoulou S, Samoli E, Analitis A, Atkinson RW, de’Donato FK, Katsouyanni K.
2015. Searching for the best modeling specification for assessing the effects of
temperature and humidity on health: a time series analysis in three European
cities. Int J Biometeorol 59(11):1585-1596, PMID: 25638489, https://doi.org/10.
1007/s00484-015-0965-2.

Schwartz JD, Lee M, Kinney PL, Yang S, Mills D, Sarofim MC, et al. 2015.
Projections of temperature-attributable premature deaths in 209 U.S. cities
using a cluster-based Poisson approach. Environ Health 14:85 PMID:
26537962, https://doi.org/10.1186/s12940-015-0071-2.

Sheridan SC, Kalkstein AJ, Kalkstein LS. 2008. Trends in heat-related mortality in
the United States, 1975-2004. Nat Hazards 50(1):145-160, https://doi.org/10.
1007/s11069-008-9327-2.

Sheridan SC, Allen MJ, Lee CC, Kalkstein LS. 2012. Future heat vulnerability in
California, Part Il: projecting future heat-related mortality. Climatic Change
115(2):311-326, https://doi.org/10.1007/s10584-012-0437-1.

Smith KR, Woodward A, Campbell-Lendrum D, Chadee DD, Honda Y, Liu Q, et al.
2014. Human health: impacts, adaptation, and co-benefits. In: Climate Change
2014: Impacts, Adaptation, and Vulnerability Part A: Global and Sectoral
Aspects Contribution of Working Group Il to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change. Field CB, Barros VR, Dokken DJ,
Mach KJ, Mastrandrea MD, Bilir TE, et al., eds. Cambridge, UK and New York,
NY:Cambridge University Press, 709-754.

Tetens 0. 1930. Uber einige meteorologische Begriffe. Z Geophys 6:297-309.

Environmental Health Perspectives

Todd N, Valleron A-J. 2015. Space-time covariation of mortality with temperature:
a systematic study of deaths in France, 1968-2009. Environ Health Perspect
123(7):659-664, PMID: 25803836, https://doi.org/10.1289/ehp.1307771.

Vardoulakis S, Dear K, Shakoor H, Heaviside C, Eggen B, McMichael AJ. 2014.
Comparative assessment of the effects of climate change on heat- and cold-
related mortality in the United Kingdom and Australia. Environ Health Perspect
122(12):1285-1292, PMID: 25222967, https://doi.org/10.1289/ehp.1307524.

Warszawski L, Frieler K, Huber V, Piontek F, Serdeczny O, Schewe J. 2014. The
Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP): project frame-
work. Proc Natl Acad Sci USA 111(9):3228-3232, PMID: 24344316, https://doi.org/
10.1073/pnas.1312330110.

Weedon GP, Gomes S, Viterbo P, Shuttleworth WJ, Blyth E, Osterle H, et al. 2011.
Creation of the WATCH forcing data and its use to assess global and regional
reference crop evaporation over land during the twentieth century. J
Hydrometeor 12:823-848, https://doi.org/10.1175/2011JHM1369.1.

Woodward A, Smith KR, Campbell-Lendrum D, Chadee DD, Honda Y, Liu Q,
et al. Climate change and health: on the latest IPCC report. Lancet
383(9924):1185-1189, PMID: 24703554, https://doi.org/10.1016/S0140-6736(14)
60576-6.

Wu J, Zhou Y, Gao Y, Fu JS, Johnson BA, Huang C, et al. 2014. Estimation and
uncertainty analysis of impacts of future heat waves on mortality in the east-
ern United States. Environ Health Perspect 122(1):10-16, PMID: 24192064,
https://doi.org/10.1289/ehp.1306670.

Zacharias S, Koppe C, Miicke H-G. 2015. Climate change effects on heat waves
and future heat wave-associated IHD mortality in Germany. Climate 3(1):100—
117, https://doi.org/10.3390/cli3010100.

087008-14


https://doi.org/10.1007/s10584-011-0149-y
https://www.ncbi.nlm.nih.gov/pubmed/25638489
https://doi.org/10.1007/s00484-015-0965-2
https://doi.org/10.1007/s00484-015-0965-2
https://www.ncbi.nlm.nih.gov/pubmed/26537962
https://doi.org/10.1186/s12940-015-0071-2
https://doi.org/10.1007/s11069-008-9327-2
https://doi.org/10.1007/s11069-008-9327-2
https://doi.org/10.1007/s10584-012-0437-1
https://www.ncbi.nlm.nih.gov/pubmed/25803836
https://doi.org/10.1289/ehp.1307771
https://www.ncbi.nlm.nih.gov/pubmed/25222967
https://doi.org/10.1289/ehp.1307524
https://www.ncbi.nlm.nih.gov/pubmed/24344316
https://doi.org/10.1073/pnas.1312330110
https://doi.org/10.1073/pnas.1312330110
https://doi.org/10.1175/2011JHM1369.1
https://www.ncbi.nlm.nih.gov/pubmed/24703554
https://doi.org/10.1016/S0140-6736(14)60576-6
https://doi.org/10.1016/S0140-6736(14)60576-6
https://www.ncbi.nlm.nih.gov/pubmed/24192064
https://doi.org/10.1289/ehp.1306670
https://doi.org/10.3390/cli3010100

	Adaptation to Climate Change: A Comparative Analysis of Modeling Methods for Heat-Related Mortality
	Introduction
	Statistical Methods for Modeling Adaptation
	Current Research Gaps

	Methods
	Experimental Design
	Climate Change Projections
	Heat-Related Mortality Estimation
	Modeling Adaptation

	Results
	Comparison of Impacts between Adaptation Modeling Methods
	Comparison of Adaptation, Emissions, and Climate Modeling Uncertainty

	Discussion
	Application of Linear ERFs
	Impacts Are Highly Sensitive to Adaptation Modeling Methods
	Comparing Uncertainty from Adaptation Uncertainty with that from Climate Modeling and Emissions
	Recommended Adaptation Modeling Methods for Future Assessments

	Conclusions
	Acknowledgments
	References


