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Abstract

District heating networks are commonly addressed in the literature as one of the most effective solutions for decreasing the 
greenhouse gas emissions from the building sector. These systems require high investments which are returned through the heat
sales. Due to the changed climate conditions and building renovation policies, heat demand in the future could decrease, 
prolonging the investment return period. 
The main scope of this paper is to assess the feasibility of using the heat demand – outdoor temperature function for heat demand 
forecast. The district of Alvalade, located in Lisbon (Portugal), was used as a case study. The district is consisted of 665 
buildings that vary in both construction period and typology. Three weather scenarios (low, medium, high) and three district 
renovation scenarios were developed (shallow, intermediate, deep). To estimate the error, obtained heat demand values were 
compared with results from a dynamic heat demand model, previously developed and validated by the authors.
The results showed that when only weather change is considered, the margin of error could be acceptable for some applications
(the error in annual demand was lower than 20% for all weather scenarios considered). However, after introducing renovation 
scenarios, the error value increased up to 59.5% (depending on the weather and renovation scenarios combination considered). 
The value of slope coefficient increased on average within the range of 3.8% up to 8% per decade, that corresponds to the 
decrease in the number of heating hours of 22-139h during the heating season (depending on the combination of weather and 
renovation scenarios considered). On the other hand, function intercept increased for 7.8-12.7% per decade (depending on the 
coupled scenarios). The values suggested could be used to modify the function parameters for the scenarios considered, and 
improve the accuracy of heat demand estimations.
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Abstract 

Remote sensors like Doppler lidars can map the winds with high accuracy and spatial resolution.  One shortcoming of 
lidars is that the radial velocity measured by the lidar does not give a complete picture of the windfield necessitating additional 
data processing to reconstruct the windfield.  Most of the popular vector retrieval algorithms rely on the homogenous wind field 
assumption which plays a vital role in reducing the indeterminacy of the inverse problem of obtaining Cartesian velocity from 
radial velocity measurements.  Consequently, these methods fail in situations where the flow is heterogeneous e.g., Turbine 
wakes.  Alternate methods are based either on statistical models (e.g., optimal interpolation [1]) or computationally intensive four 
dimensional variational methods [2].  This study deals with a 2D variational vector retrieval for Doppler lidar that uses the radial 
velocity advection equation as an additional constraint along with a tangential velocity constraint derived from a new formulation 
with gradients of radial velocity.  The retrieval was applied on lidar data from a wind farm and preliminary analysis revealed that 
the algorithm was able to retrieve the mean wind field while preserving the small scale flow structure.  
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1. Introduction 

Doppler wind lidars are becoming popular for remote wind measurements and have seen applications in 
atmospheric science, aviation safety and wind energy to name a few.  One of the potential applications of Doppler 
wind lidars is in wind farm control techniques.  The wind data from a lidar can be used to control individual turbines 
to maximize the power output of the entire wind farm.  However, lidars can only measure radial velocity i.e., 
component of velocity along the lidar beam, requiring additional post processing steps to retrieve the full wind 
vector before being passed into a wind farm control algorithm.  Majority of the vector retrieval algorithms in use 
today are based on the homogeneous wind field assumption (within the retrieval domain) and perform poorly in 
complex flow conditions (e.g. Wind turbine Wakes).  Alternate methods based on 4D-VAR are prohibitively 
expensive and are often impractical to be employed in applications requiring real-time vector retrievals.  To address 
this issue, a new computationally efficient 2D-VAR vector retrieval for low elevation PPI scans was developed and 
tested on data from an offshore wind farm.  The following sections describe the formulation of this retrieval and 
present a preliminary validation of the retrieval using data from an offshore wind farm. 

 
Nomenclature 

u Component of wind velocity in X-direction (East-West direction) 
v  Component of wind velocity in Y-direction (North- South direction) 
J Cost function 
LAT  Lowest Astronomical Tide 
PPI Plan position indicator  
RHI Range height indicator  
VAD Velocity Azimuth Display 
VVP Volume Velocity Processing 
CFD Computational Fluid Dynamics 

 

2. Relevant work 

 Variational retrieval methods [3,4,5] can be broadly classified into two types [6]: a) Parameter identification 
techniques (PI) and b) 4D-VAR based methods.  In the former, data from the radar/lidar is used to estimate the 
unknowns (e.g., Cartesian velocity) by fitting them to a set of control equations pertaining to reflectivity/ radial 
velocity conservation equation [7].  The resulting retrieval could be considered as a time-mean estimate over the 
acquisition time period.  The latter method (i.e., 4D-VAR based) relies on a forecast model to obtain the wind field 
along with thermodynamic variables [8].  4D-VAR methods have been known to be computationally expensive to 
implement and often limited by the underlying assumptions in the forecast model.  

 The PI techniques involve finding the best time-mean estimate of the control variables (X = [u,v,w…]) by 
minimizing a cost function (J(X)) of the form: 

 

J 𝐗𝐗 =
1
2Ω

W(C(* 		𝑑𝑑Ω																																																																							(1) 

 
where, W( are the weights pertaining to the relative importance of the constraints C(, corresponding to the various 

control equations in a weak sense.  Although, the control equations could be specified as strong constraints [9] or 
weak constraints [4,5] previous works [10,11] have shown that the weak constraint formulations perform better in 
the presence of model errors, especially with the reflectivity/radial velocity conservation equation.   

 Author name / Energy Procedia 00 (2017) 000–000   3 

Previous PI works mainly differed in the type of constraints and method used for the minimization of the cost 
function. The work presented in [7] first proposed a “simple adjoint method (SA)”, to retrieve the time mean winds 
of artificial data, using only the Lagrangian conservation of radar reflectivity as a strong constraint in the cost 
function.  The SA method was later upgraded to include the eddy diffusion & residual forcing terms in the 
reflectivity conservation equation in [12], continuity equation as a strong constraint in [11] and radial velocity 
equation with algorithmic improvements in [13].  Following the SA method, [14] developed a computationally 
efficient least-squares formulation with weak zero horizontal divergence and vorticity constraint.  A single Doppler 
radar wind retrieval intercomparison study by [15] showed that the least squares formulation performed better than 
the other retrieval methods for the given test case.  When compared with the SA method, the least squares 
formulation was found to be robust and yielded similar retrievals for short scan periods. In addition, [16] added a 
background constraint to reduce the noise arising from the finite difference calculations of the gradients and to 
facilitate a smooth transition to fill the data void regions with wind field from the background.  In an attempt to 
preserve local structure, [17] developed a two step variational method in which a proxy background was obtained 
from a second order expansion of Legendre polynomials. Some of the above methods have been extended for dual 
Doppler radar by [18].  

Methods based on 4D-VAR of [8] have been tested on Doppler lidar by studies referenced in [19, 2, 20, 21].  A 
two-step variational retrieval method based on [17] was implemented for the Hong Kong International airport lidar 
dataset to detect flow hazards for airplanes [22] and was later used in Lagrangean coherent structure analysis by 
[23].  The same method was implemented for a plume dispersion and air quality study by [24].  

The method described in this study is based on [16] with different terms in the cost function. These terms are 
specifically applicable for low elevation PPI scans and facilitate a fast vector retrieval with real- time application 
capabilities. 

3. Formulation 

Let u, v and w be the three components of velocity in Cartesian coordinate system.  These Cartesian velocity 
components and their counterparts in spherical coordinates are related by: 

Fig. 1. (a) Location of Alpha Ventus wind farm (b) FINO-1 research platform with the meteorological mast and lidar (c) lidar 

scan with retrieval domain. T3,T4,T7,T8,T11 and T12 are wind turbines  
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𝑉𝑉0 = 𝑢𝑢. 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑣𝑣. 𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃 + 𝑤𝑤. 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠																																																											(2) 

𝑉𝑉=> = −𝑢𝑢. 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑣𝑣. 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃																																																																									(3) 

𝑉𝑉=A = −𝑢𝑢. 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 − 𝑣𝑣. 𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃𝜃 + 𝑤𝑤. 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐																																																							(4)  

where, 𝑉𝑉0 is the radial velocity, 𝑉𝑉=> is the tangential velocity in the horizontal plane, 𝑉𝑉=A is the tangential velocity 
in the vertical and  (𝜃𝜃, 𝜑𝜑) are the azimuth and elevation angles respectively.  As mentioned previously, a Doppler 
lidar can measure only 𝑉𝑉0.   

Let us consider a repeated PPI scan at low elevation angles and attempt to retrieve the horizontal components of 
the velocity vector.  At low elevation angles (𝜑𝜑 ≈ 0), Eq. (2) reduces to 

 
𝑉𝑉0 = 𝑢𝑢. 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑣𝑣. 𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃																																																																												(5) 

Differentiating Eq. (5) along the azimuth direction and using Eq. (3) we get 
 

𝜕𝜕𝑉𝑉0
𝜕𝜕𝜕𝜕

= −𝑢𝑢. 𝑠𝑠𝑠𝑠𝑠𝑠𝜃𝜃 + 𝑣𝑣. 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 +
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
	𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 +

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠																																																	(6) 

			= 𝑉𝑉=> + P						, 𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒		P =
	𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
	𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 +

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 																																											(7) 

The term ‘P’ is identically zero when the simplified constant wind assumption is true (e.g. VAD, VVP).  ‘P’ 
could be understood as a measure of deviation from this assumption.  We now have two equations (Eq. (5) and Eq. 
(7)) and three unknown variables (u,v and P).  These equations can be closed by considering the radial velocity 
advection equation.  Assuming that radial velocity patterns advect with the flow, we get  

 

Fig. 2. Comparisons of (a) wind speed and (b) wind direction, retrievals from 2D-VAR, VVP and CVA 

 Author name / Energy Procedia 00 (2017) 000–000   5 

𝜕𝜕𝑉𝑉0
𝜕𝜕𝜕𝜕
+ 	𝑢𝑢	

𝜕𝜕𝑉𝑉0
𝜕𝜕𝜕𝜕

+ 𝑣𝑣	
𝜕𝜕𝑉𝑉0
𝜕𝜕𝜕𝜕

= 0																																																																									(8) 

 
where, 𝑉𝑉0  is the filtered radial velocity (e.g., Gaussian filter - introduced to reduce the effect of noise on 

numerical derivatives).  By substituting the partial derivatives with finite differences, and solving Eq. (5), (7) and 
(8), the horizontal vector field can be determined.  Since gradients are prone to become unreliable in regions with 
high noise levels, a background constraint similar to [16] is included.  The background constraint equation is 
formulated as the departure of the vector field (u,v) from the vector field derived using VVP or sector VAD (𝑢𝑢R, 𝑣𝑣R).  
The vector field (u,v) can be estimated by minimizing a cost function derived from the above mentioned constraints 
i.e.,  

 

Fig. 3. (a) Radial velocity, (b) VVP retrieved wind field (c) 2D-VAR retrieved wind field 
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The term ‘P’ is identically zero when the simplified constant wind assumption is true (e.g. VAD, VVP).  ‘P’ 
could be understood as a measure of deviation from this assumption.  We now have two equations (Eq. (5) and Eq. 
(7)) and three unknown variables (u,v and P).  These equations can be closed by considering the radial velocity 
advection equation.  Assuming that radial velocity patterns advect with the flow, we get  

 

Fig. 2. Comparisons of (a) wind speed and (b) wind direction, retrievals from 2D-VAR, VVP and CVA 
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where, 𝑉𝑉0  is the filtered radial velocity (e.g., Gaussian filter - introduced to reduce the effect of noise on 

numerical derivatives).  By substituting the partial derivatives with finite differences, and solving Eq. (5), (7) and 
(8), the horizontal vector field can be determined.  Since gradients are prone to become unreliable in regions with 
high noise levels, a background constraint similar to [16] is included.  The background constraint equation is 
formulated as the departure of the vector field (u,v) from the vector field derived using VVP or sector VAD (𝑢𝑢R, 𝑣𝑣R).  
The vector field (u,v) can be estimated by minimizing a cost function derived from the above mentioned constraints 
i.e.,  

 

Fig. 3. (a) Radial velocity, (b) VVP retrieved wind field (c) 2D-VAR retrieved wind field 
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The weights for each term in the cost function were chosen such that the terms have same order of magnitude.  

The objective is to find u, v and P at which the cost function is minimized or the gradients given in Eq. (10), (11) 
and (12)) vanish.   
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The solution which minimizes Eq. (9) can be determined by means of a quasi-Newton method.  In addition, the 

radial velocity values from the lidar’s spherical coordinate system were transformed to a Cartesian coordinate 
system, which enabled restructuring of the matrices for computational efficiency. 

4. Test case and validation 

FINO-1 (Forschungsplattformen in Nord- und Ostsee Nr.1) is a German offshore wind energy research platform 
located close to the Alpha Ventus wind farm in the North Sea.  As a part of an extensive offshore measurement 
campaign to improve the understanding of marine boundary layer, offshore wake propagation effects and air- sea 
interaction, two scanning Doppler wind lidars (Leosphere’s Windcube 100S) were installed on the FINO-1 platform 
to perform various Dual- doppler and vertical profiling scans.  On 31st, August, 2016, one of the lidars was 
configured to perform repeated low elevation angle (0.5°) PPI scans, primarily for the validation of the new 2D-
VAR vector retrieval. The lidar scanned a 90° azimuthal sector in the direction of the wind farm (Fig. 1), with a 2°/s 
scan speed, accumulation time of 1 second and a 25m range resolution, the lidar could produce one scan product 
approximately every 45 seconds. With a good atmospheric aerosol content, the returns were clean and the lidar was 
able to capture winds at distance exceeding 2.5km at times.   

By combining two successive scans for each time step, the wind field in a 1170m x 1400m domain, with a grid 
spacing of 30m was retrieved using the 2D-VAR algorithm and the traditional Volume Velocity Processing (VVP) 
algorithm.  The VVP estimates were obtained by pooling all the radial velocity measurements within a 200 m region 
around each grid point in the domain and estimating the velocity components that best fit the measurements in a 
least squares sense.  The 200m search space for VVP is required to obtain reliable estimates of (u,v) such that the 
variation in radial velocity due to orientation of the line of sight is greater than turbulent fluctuations in the wind 
[25].  The downside of this implementation is that the VVP estimates become less reliable at grid points far away 
from the lidar.  However, this wasn’t an issue in the present study since only the grid point closest to the lidar were 
considered for obtaining the validation statistics with the anemometer data.  The 10-minute averaged wind data from 
the cup and vane anemometer (CVA) situated at 33m LAT on the meteorological mast was used for corroborating 
and validating the wind retrieval from both 2D-VAR and VVP algorithms.  Since the lidar and the met mast were 
both located on the FINO-1 platform, retrieved wind vector from the nearest grid point (excluding the points along 
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the boundary) were considered.  In addition, the temporal profiles of wind speed and direction from the lidar were 
obtained by taking the mean of the retrieved u and v component of velocity within a 10-minute window around the 
CVA measurement time.  The error in wind speed (∆U), wind direction (∆φ) and Pearson correlation coefficient (𝑅𝑅) 
were calculated according to Eq. (13), (14) and (15). 
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where, ‘𝐶𝐶𝐶𝐶𝐶𝐶()’ is the covariance and ‘𝜎𝜎’ is the standard deviation. From Table 1 and Fig. 2, it is evident that 

both VVP and the new 2D-VAR methods accurately estimate the mean flow although VVP performs slightly better 
primarily due to its underlying formulation which is designed to obtain the mean quantities. The downside of this is 
the loss of local flow structure as seen in Fig. 3. It is evident from this figure that the wind vectors estimated by the 
2D-VAR algorithm (Fig. 3c) corroborate well with the radial velocity values, at least qualitatively (Fig. 3a) 
especially in capturing small scale flow structures, including what appear to be wakes behind the wind turbines.  All 
this small scale information is essentially lost in the VVP retrieval (Fig. 3b). 

  
 Table 1. Validation of 2D-VAR and VVP with 10-minute averaged CVA data 

Algorithm/Variable 
Wind speed 

error  

Wind speed 
correlation 
coefficient 

Wind direction 
error 

Wind direction 
correlation 
coefficient 

2D-VAR 
0.383 m/s 
(5.04%) 

0.96 -1.4° 0.98 

VVP 
0.29 m/s 
(2.01%) 

0.98 4.3° 0.99 

 

5. Conclusions 

A new 2D-VAR algorithm based on the parameter identification technique was devised to retrieve 2D- horizontal 
wind vectors from low elevation PPI scans.  The algorithm determines the vector components of the wind field by 
minimizing a cost function formed by the radial velocity advection equation, radial velocity equation, tangential 
velocity equation and deviation from the background determined from a VVP algorithm.  The retrieval was applied 
on data from a lidar installed on an offshore research platform, scanning a wind farm and the results were validated 
with measurements from a cup and vane anemometer.  One limitation of this study was that, the true accuracy of the 
retrieval based on instantaneous measurements, could not be quantified from this dataset due to the lack of 
instrumentation in the lidar scan region.  However, preliminary analysis from this exploratory study showed that the 
algorithm while being computationally efficient with fast runtime, was able to capture local structure in the flow 
including possible wakes from the wind turbines, which the VVP failed to capture while performing almost as well 
as VVP in capture the mean quantities.  
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The solution which minimizes Eq. (9) can be determined by means of a quasi-Newton method.  In addition, the 
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system, which enabled restructuring of the matrices for computational efficiency. 

4. Test case and validation 

FINO-1 (Forschungsplattformen in Nord- und Ostsee Nr.1) is a German offshore wind energy research platform 
located close to the Alpha Ventus wind farm in the North Sea.  As a part of an extensive offshore measurement 
campaign to improve the understanding of marine boundary layer, offshore wake propagation effects and air- sea 
interaction, two scanning Doppler wind lidars (Leosphere’s Windcube 100S) were installed on the FINO-1 platform 
to perform various Dual- doppler and vertical profiling scans.  On 31st, August, 2016, one of the lidars was 
configured to perform repeated low elevation angle (0.5°) PPI scans, primarily for the validation of the new 2D-
VAR vector retrieval. The lidar scanned a 90° azimuthal sector in the direction of the wind farm (Fig. 1), with a 2°/s 
scan speed, accumulation time of 1 second and a 25m range resolution, the lidar could produce one scan product 
approximately every 45 seconds. With a good atmospheric aerosol content, the returns were clean and the lidar was 
able to capture winds at distance exceeding 2.5km at times.   

By combining two successive scans for each time step, the wind field in a 1170m x 1400m domain, with a grid 
spacing of 30m was retrieved using the 2D-VAR algorithm and the traditional Volume Velocity Processing (VVP) 
algorithm.  The VVP estimates were obtained by pooling all the radial velocity measurements within a 200 m region 
around each grid point in the domain and estimating the velocity components that best fit the measurements in a 
least squares sense.  The 200m search space for VVP is required to obtain reliable estimates of (u,v) such that the 
variation in radial velocity due to orientation of the line of sight is greater than turbulent fluctuations in the wind 
[25].  The downside of this implementation is that the VVP estimates become less reliable at grid points far away 
from the lidar.  However, this wasn’t an issue in the present study since only the grid point closest to the lidar were 
considered for obtaining the validation statistics with the anemometer data.  The 10-minute averaged wind data from 
the cup and vane anemometer (CVA) situated at 33m LAT on the meteorological mast was used for corroborating 
and validating the wind retrieval from both 2D-VAR and VVP algorithms.  Since the lidar and the met mast were 
both located on the FINO-1 platform, retrieved wind vector from the nearest grid point (excluding the points along 
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the boundary) were considered.  In addition, the temporal profiles of wind speed and direction from the lidar were 
obtained by taking the mean of the retrieved u and v component of velocity within a 10-minute window around the 
CVA measurement time.  The error in wind speed (∆U), wind direction (∆φ) and Pearson correlation coefficient (𝑅𝑅) 
were calculated according to Eq. (13), (14) and (15). 
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where, ‘𝐶𝐶𝐶𝐶𝐶𝐶()’ is the covariance and ‘𝜎𝜎’ is the standard deviation. From Table 1 and Fig. 2, it is evident that 

both VVP and the new 2D-VAR methods accurately estimate the mean flow although VVP performs slightly better 
primarily due to its underlying formulation which is designed to obtain the mean quantities. The downside of this is 
the loss of local flow structure as seen in Fig. 3. It is evident from this figure that the wind vectors estimated by the 
2D-VAR algorithm (Fig. 3c) corroborate well with the radial velocity values, at least qualitatively (Fig. 3a) 
especially in capturing small scale flow structures, including what appear to be wakes behind the wind turbines.  All 
this small scale information is essentially lost in the VVP retrieval (Fig. 3b). 

  
 Table 1. Validation of 2D-VAR and VVP with 10-minute averaged CVA data 
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Wind speed 
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Wind direction 
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0.383 m/s 
(5.04%) 

0.96 -1.4° 0.98 

VVP 
0.29 m/s 
(2.01%) 

0.98 4.3° 0.99 

 

5. Conclusions 

A new 2D-VAR algorithm based on the parameter identification technique was devised to retrieve 2D- horizontal 
wind vectors from low elevation PPI scans.  The algorithm determines the vector components of the wind field by 
minimizing a cost function formed by the radial velocity advection equation, radial velocity equation, tangential 
velocity equation and deviation from the background determined from a VVP algorithm.  The retrieval was applied 
on data from a lidar installed on an offshore research platform, scanning a wind farm and the results were validated 
with measurements from a cup and vane anemometer.  One limitation of this study was that, the true accuracy of the 
retrieval based on instantaneous measurements, could not be quantified from this dataset due to the lack of 
instrumentation in the lidar scan region.  However, preliminary analysis from this exploratory study showed that the 
algorithm while being computationally efficient with fast runtime, was able to capture local structure in the flow 
including possible wakes from the wind turbines, which the VVP failed to capture while performing almost as well 
as VVP in capture the mean quantities.  
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