Matching Items (43,913)
Description
The division of domestic labor has far-reaching implications for "private" life (e.g. relational satisfaction and conflict) and for "public" paid labor (e.g. time and dedication in the workplace and career advancement). Although several theories have been developed and tested, they do not sufficiently explain the consistent findings that women in mixed sex households perform a majority of the domestic labor. Without understanding the causes for differences in task performance, past research encouraging communicative solutions to ameliorate conflict was ineffective in changing task allocation and performance. Therefore, it is necessary to understand theoretical explanations that drive domestic labor behavior to develop effective solutions. The recent integrative theory of the division of domestic labor attempts to explain how individuals interact with household partners to allocate domestic tasks. Recognizing the complexity of the division of domestic labor, the integrative theory considers individual, dyadic, and societal factors that influence task allocation. Because clear differences in task performance have been found in mixed sex households, this study separates sex and gender as distinct variables by considering same-sex roommate relationships, essentially removing sex differences from the living arrangement. Furthermore, this study considers individual threshold levels as described by the integrative theory in order to test the theoretical underpinnings. Specifically, this study is designed to investigate the relationships between individual cleanliness threshold levels and gender, sex, perceptions of satisfaction, equity, and frequency of conflict in same-sex roommate relationships. Results indicate support of the integrative theory of the division of domestic labor. Regarding gender differences, partial support for the theory appeared in that feminine individuals have lower threshold levels than masculine individuals. Regarding sex differences, women possess lower individual threshold levels (i.e. more bothered when a task is undone) compared to men, which likely accounts for why existing research indicates that women spend more time performing domestic tasks. What is more, individuals with higher threshold levels report greater relational satisfaction. Further, individuals whose threshold levels differ from their living partner report lower relational satisfaction and greater conflict frequency. Finally, in terms of equity, both overbenefited and underbenefited individuals experience more conflict than those who feel their relationship is equitable. These results provide theoretical support for the integrative theory of the division of labor. Furthermore, the development and testing of a threshold measure scale can be used practically for future research and for better roommate pairings by universities. In addition, communication scholars, family practitioners and counselors, and universities can apply these theoretically grounded research findings to develop and test strategies to reduce conflict and increase relational satisfaction among roommates and couples.
ContributorsRiforgiate, Sarah (Author) / Alberts, Jess K. (Thesis advisor) / Mongeau, Paul (Thesis advisor) / Roberto, Anthony (Committee member) / Romero, Mary (Committee member) / Arizona State University (Publisher)
Created2011
Description
At first glance, trends in increased hunger and obesity in the United States (US) would seem to represent the result of different causal mechanisms. The United States Department of Agriculture (USDA) reported that nearly 50 million Americans had experienced hunger in 2009. A year later, the Centers for Disease Control and Prevention published a report showing that 68% of the US population was either overweight or obese. Researchers have found that these contrasting trends are actually interrelated. Being so, it is imperative that communities and individuals experiencing problems with food security are provided better access to healthy food options. In response to the need to increase healthy food access, many farmers markets in the US have received funding from the USDA to accept vouchers from federal food security programs, such as the Supplemental Nutrition Assistance Program (SNAP). In Downtown Phoenix, Arizona, one organization accepting vouchers from several programs is the Phoenix Public Market. However, the mere existence of these programs is not enough to establish food security within a community: characteristics of the population and food environments must also be considered. To examine issues of food security and public health, this thesis utilizes geographical information systems (GIS) technology as a tool to analyze specific environments in order to inform program effectiveness and future funding opportunities. Utilizing methods from community-based participatory research (CBPR) and GIS, a mapping project was conducted in partnership with the Market to answer three questions: (1) what is the demographic makeup of the surrounding community? (2) What retailers around the Market also accept food security vouchers? And (3) where are food security offices (SNAP and WIC) located within the area? Both in terms of demographic characteristics and the surrounding food environment, the project results illustrate that the Market is embedded within a population of need, and an area where it could greatly influence community food security.
ContributorsRawson, Brooke (Author) / Vargas, Perla A (Thesis advisor) / Booze, Randy (Committee member) / Vaughan, Suzanne (Committee member) / Arizona State University (Publisher)
Created2011
Description
The infrastructure is built in Unsaturated Soils. However, the geotechnical practitioners insist in designing the structures based on Saturated Soil Mechanics. The design of structures based on unsaturated soil mechanics is desirable because it reduces cost and it is by far a more sustainable approach. The research community has identified the Soil-Water Characteristic Curve as the most important soil property when dealing with unsaturated conditions. This soil property is unpopular among practitioners because the laboratory testing takes an appreciable amount of time. Several authors have attempted predicting the Soil-Water Characteristic Curve; however, most of the published predictions are based on a very limited soil database. The National Resources Conservation Service has a vast database of engineering soil properties with more than 36,000 soils, which includes water content measurements at different levels of suctions. This database was used in this study to validate two existing models that based the Soil-Water Characteristic Curve prediction on statistical analysis. It was found that although the predictions are acceptable for some ranges of suctions; they did not performed that well for others. It was found that the first model validated was accurate for fine-grained soils, while the second model was best for granular soils. For these reasons, two models to estimate the Soil-Water Characteristic Curve are proposed. The first model estimates the fitting parameters of the Fredlund and Xing (1994) function separately and then, the predicted parameters are fitted to the Fredlund and Xing function for an overall estimate of the degree of saturation. Results show an overall improvement on the predicted values when compared to existing models. The second model is based on the relationship between the Soil-Water Characteristic Curve and the Pore-Size Distribution of the soils. The process allows for the prediction of the entire Soil-Water Characteristic Curve function and proved to be a better approximation than that used in the first attempt. Both models constitute important tools in the implementation of unsaturated soil mechanics into engineering practice due to the link of the prediction with simple and well known engineering soil properties.
ContributorsTorres Hernández, Gustavo (Author) / Zapata, Claudia (Thesis advisor) / Houston, Sandra (Committee member) / Witczak, Matthew (Committee member) / Arizona State University (Publisher)
Created2011
Description
This study addresses the landscape connectivity pattern at two different scales. The county-level analysis aims to understand how urban ecosystem structure is likely to evolve in response to the proposed development plans in Maricopa County, Arizona. To identify the spatio-temporal land pattern change, six key landscape metrics were quantified in relative to the urban development scenarios based on the certainty of the proposed urban plans with different level of urban footprints. The effects of future development plans from municipalities on landscape connectivity were then analyzed in the scaled temporal and spatial frame to identify in which urban condition the connectivity value would most likely to decrease. The results demonstrated that tremendous amount of lands will be dedicated to future urbanization, and especially urban agricultural lands will be likely to be vulnerable. The metro-level analysis focuses on a group of species that represent urban desert landscape and have different degrees of fragmentation sensitivity and habitat type requirement. It hypothesizes that the urban habitat patch connectivity is impacted upon by urban density. Two underlying propositions were set: first, lower connectivity is predominant in areas with high urbanization cover; second, landscape connectivity will be impacted largely on the interfaces between urban, suburban, and rural areas. To test this, a GIS-based connectivity modeling was employed. The resultant change in connectivity values was examined for exploring the spatial relation to predefined spatial frames, such as urban, suburban, and rural zones of which boundaries were delineated by buffering method with two criteria of human population density and urban cover proportion. The study outcomes provide a practical guidance to minimize connectivity loss and degradation by informing planners with more optimal alternatives among various policy decisions and implementation. It also gives an inspiration for ecological landscape planning in urbanized or urbanizing regions which can ultimately leads urban landscape sustainability.
ContributorsPak, So-hyŏn (Author) / Cook, Edward (Thesis advisor) / Crewe, Katherine (Committee member) / Wu, Jianguo (Jingle) (Committee member) / Arizona State University (Publisher)
Created2011
Description
Arizona has an abundant solar resource and technologically mature systems are available to capture it, but solar energy systems are still considered to be an innovative technology. Adoption rates for solar and wind energy systems rise and fall with the political tides, and are relatively low in most rural areas in Arizona. This thesis tests the hypothesis that a consumer profile developed to characterize the adopters of renewable energy technology (RET) systems in rural Arizona is the same as the profile of other area residents who performed renovations, upgrades or additions to their homes. Residents of Santa Cruz and Cochise Counties who had obtained building permits to either install a solar or wind energy system or to perform a substantial renovation or upgrade to their home were surveyed to gather demographic, psychographic and behavioristic data. The data from 133 survey responses (76 from RET adopters and 57 from non-adopters) provided insights about their decisions regarding whether or not to adopt a RET system. The results, which are statistically significant at the 99% level of confidence, indicate that RET adopters had smaller households, were older and had higher education levels and greater income levels than the non-adopters. The research also provides answers to three related questions: First, are the energy conservation habits of RET adopters the same as those of non-adopters? Second, what were the sources of information consulted and the most important factors that motivated the decision to purchase a solar or wind energy system? And finally, are any of the factors which influenced the decision to live in a rural area in southeastern Arizona related to the decision to purchase a renewable energy system? The answers are provided, along with a series of recommendations that are designed to inform marketers and other promoters of RETs about how to utilize these results to help achieve their goals.
ContributorsPorter, Wayne Eliot (Author) / Reddy, T. Agami (Thesis advisor) / Pasqualetti, Martin (Committee member) / Larson, Kelli (Committee member) / Kennedy, Linda (Committee member) / Arizona State University (Publisher)
Created2011
Description
Bridging semantic gap is one of the fundamental problems in multimedia computing and pattern recognition. The challenge of associating low-level signal with their high-level semantic interpretation is mainly due to the fact that semantics are often conveyed implicitly in a context, relying on interactions among multiple levels of concepts or low-level data entities. Also, additional domain knowledge may often be indispensable for uncovering the underlying semantics, but in most cases such domain knowledge is not readily available from the acquired media streams. Thus, making use of various types of contextual information and leveraging corresponding domain knowledge are vital for effectively associating high-level semantics with low-level signals with higher accuracies in multimedia computing problems. In this work, novel computational methods are explored and developed for incorporating contextual information/domain knowledge in different forms for multimedia computing and pattern recognition problems. Specifically, a novel Bayesian approach with statistical-sampling-based inference is proposed for incorporating a special type of domain knowledge, spatial prior for the underlying shapes; cross-modality correlations via Kernel Canonical Correlation Analysis is explored and the learnt space is then used for associating multimedia contents in different forms; model contextual information as a graph is leveraged for regulating interactions among high-level semantic concepts (e.g., category labels), low-level input signal (e.g., spatial/temporal structure). Four real-world applications, including visual-to-tactile face conversion, photo tag recommendation, wild web video classification and unconstrained consumer video summarization, are selected to demonstrate the effectiveness of the approaches. These applications range from classic research challenges to emerging tasks in multimedia computing. Results from experiments on large-scale real-world data with comparisons to other state-of-the-art methods and subjective evaluations with end users confirmed that the developed approaches exhibit salient advantages, suggesting that they are promising for leveraging contextual information/domain knowledge for a wide range of multimedia computing and pattern recognition problems.
ContributorsWang, Zhesheng (Author) / Li, Baoxin (Thesis advisor) / Sundaram, Hari (Committee member) / Qian, Gang (Committee member) / Ye, Jieping (Committee member) / Arizona State University (Publisher)
Created2011
Description
In the last few years, significant advances in nanofabrication have allowed tailoring of structures and materials at a molecular level enabling nanofabrication with precise control of dimensions and organization at molecular length scales, a development leading to significant advances in nanoscale systems. Although, the direction of progress seems to follow the path of microelectronics, the fundamental physics in a nanoscale system changes more rapidly compared to microelectronics, as the size scale is decreased. The changes in length, area, and volume ratios due to reduction in size alter the relative influence of various physical effects determining the overall operation of a system in unexpected ways. One such category of nanofluidic structures demonstrating unique ionic and molecular transport characteristics are nanopores. Nanopores derive their unique transport characteristics from the electrostatic interaction of nanopore surface charge with aqueous ionic solutions. In this doctoral research cylindrical nanopores, in single and array configuration, were fabricated in silicon-on-insulator (SOI) using a combination of electron beam lithography (EBL) and reactive ion etching (RIE). The fabrication method presented is compatible with standard semiconductor foundries and allows fabrication of nanopores with desired geometries and precise dimensional control, providing near ideal and isolated physical modeling systems to study ion transport at the nanometer level. Ion transport through nanopores was characterized by measuring ionic conductances of arrays of nanopores of various diameters for a wide range of concentration of aqueous hydrochloric acid (HCl) ionic solutions. Measured ionic conductances demonstrated two distinct regimes based on surface charge interactions at low ionic concentrations and nanopore geometry at high ionic concentrations. Field effect modulation of ion transport through nanopore arrays, in a fashion similar to semiconductor transistors, was also studied. Using ionic conductance measurements, it was shown that the concentration of ions in the nanopore volume was significantly changed when a gate voltage on nanopore arrays was applied, hence controlling their transport. Based on the ion transport results, single nanopores were used to demonstrate their application as nanoscale particle counters by using polystyrene nanobeads, monodispersed in aqueous HCl solutions of different molarities. Effects of field effect modulation on particle transition events were also demonstrated.
ContributorsJoshi, Punarvasu (Author) / Thornton, Trevor J (Thesis advisor) / Goryll, Michael (Thesis advisor) / Spanias, Andreas (Committee member) / Saraniti, Marco (Committee member) / Arizona State University (Publisher)
Created2011
Description
Telomerase ribonucleoprotein is a unique reverse transcriptase that adds telomeric DNA repeats to chromosome ends. Telomerase RNA (TER) is extremely divergent in size, sequence and has to date only been identified in vertebrate, yeast, ciliate and plant species. Herein, the identification and characterization of TERs from an evolutionarily distinct group, filamentous fungi, is presented. Based on phylogenetic analysis of 69 TER sequences and mutagenesis analysis of in vitro reconstituted Neurospora telomerase, we discovered a conserved functional core in filamentous fungal TERs sharing homologous structural features with vertebrate TERs. This core contains the template-pseudoknot and P6/P6.1 domains, essential for enzymatic activity, which retain function in trans. The in vitro reconstituted Neurospora telomerase is highly processive, synthesizing canonical TTAGGG repeats. Similar to Schizosaccharomycetes pombe, filamentous fungal TERs utilize the spliceosomal splicing machinery for 3' processing. Neurospora telomerase, while associating with the Est1 protein in vivo, does not bind homologous Ku or Sm proteins found in both budding and fission yeast telomerase holoenzyme, suggesting a unique biogenesis pathway. The development of Neurospora as a model organism to study telomeres and telomerase may shed light upon the evolution of the canonical TTAGGG telomeric repeat and telomerase processivity within fungal species.
ContributorsQi, Xiaodong (Author) / Chen, Julian (Thesis advisor) / Ghirlanda, Giovanna (Committee member) / Chaput, John (Committee member) / Arizona State University (Publisher)
Created2011
Description
ABSTRACT This multi-case study research, using qualitative and quantitative methods, examines, compares, and validates the traits, behaviors, and formulas for success utilized by four experienced, long-term, exemplary executives who lead nonprofit organizations (NPOs) that serve homeless and "at risk" populations. Service longevity is a measure of success in this study and each leader subject must have served a minimum of five years at their NPO to participate, though most have been leading their respective NPOs far longer. An NPO leader affects not only an organization but individual constituents and the entire community. Each leader subject is considered successful by numerous constituents and the community. Anyone is at risk for homelessness and its effects on the entire community are boundless. Traits and formulas for success are measured using three surveys: Kouzes & Posner's 360 LPI and Most Admired Characteristics surveys and Cialdini's Influence IQ Test. Additional data sources are personal interviews, organizational 990s, annual reports, and other financial and programmatic data. The instruments for data analysis are a Likert 7 Point Importance Scale used for the program and organizational evaluations by NPO professional outside raters and the Strategic Plan. Analytic tools are the Pearson Product Moment Correlations, the organization's 990s, a 3 year annual report comparison, and participant observation. This study measures the leaders against the ideal. One common theme among all the leaders is consistency, one of Cialdini's Six Principles of Influence; ii
ContributorsOstrom, Martha (Author) / Cayer, N. Joseph (Thesis advisor) / Cialdini, Robert B. (Committee member) / Schlacter, John L (Committee member) / Arizona State University (Publisher)
Created2011
Description
Image processing in canals, rivers and other bodies of water has been a very important concern. This research using Image Processing was performed to obtain a photographic evidence of the data of the site which helps in monitoring the conditions of the water body and the surroundings. Images are captured using a digital camera and the images are stored onto a datalogger, these images are retrieved using a cellular/ satellite modem. A MATLAB program was designed to obtain the level of water by just entering the file name into to the program, a curve fit model was created to determine the contrast parameters. The contrast parameters were obtained using the data obtained from the gray scale image mainly the mean and variance of the intensity values. The enhanced images are used to determine the level of water by taking pixel intensity plots along the region of interest. The level of water obtained is accurate to less than 2% of the actual level of water observed from the image. High speed imaging in micro channels have various application in industrial field, medical field etc. In medical field it is tested by using blood samples. The experimental procedure proposed determines the flow duration and the defects observed in these channel using a fluid introduced into the micro channel the fluid being water based dye and whole milk. The viscosity of the fluid shows different types of flow patterns and defects in the micro channel. The defects observed vary from a small effect to the flow pattern to an extreme defect in the channel such as obstruction of flow or deformation in the channel. The sample needs to be further analyzed by SEM to get a better insight on the defects.
ContributorsShasedhara, Abhijeet Bangalore (Author) / Lee, Taewoo (Thesis advisor) / Huang, Huei-Ping (Committee member) / Chen, Kangping (Committee member) / Arizona State University (Publisher)
Created2011