Matching Items (43,913)
Description
This thesis focuses on the continued extension, validation, and application of combined thermal-structural reduced order models for nonlinear geometric problems. The first part of the thesis focuses on the determination of the temperature distribution and structural response induced by an oscillating flux on the top surface of a flat panel. This flux is introduced here as a simplified representation of the thermal effects of an oscillating shock on a panel of a supersonic/hypersonic vehicle. Accordingly, a random acoustic excitation is also considered to act on the panel and the level of the thermo-acoustic excitation is assumed to be large enough to induce a nonlinear geometric response of the panel. Both temperature distribution and structural response are determined using recently proposed reduced order models and a complete one way, thermal-structural, coupling is enforced. A steady-state analysis of the thermal problem is first carried out that is then utilized in the structural reduced order model governing equations with and without the acoustic excitation. A detailed validation of the reduced order models is carried out by comparison with a few full finite element (Nastran) computations. The computational expedience of the reduced order models allows a detailed parametric study of the response as a function of the frequency of the oscillating flux. The nature of the corresponding structural ROM equations is seen to be of a Mathieu-type with Duffing nonlinearity (originating from the nonlinear geometric effects) with external harmonic excitation (associated with the thermal moments terms on the panel). A dominant resonance is observed and explained. The second part of the thesis is focused on extending the formulation of the combined thermal-structural reduced order modeling method to include temperature dependent structural properties, more specifically of the elasticity tensor and the coefficient of thermal expansion. These properties were assumed to vary linearly with local temperature and it was found that the linear stiffness coefficients and the "thermal moment" terms then are cubic functions of the temperature generalized coordinates while the quadratic and cubic stiffness coefficients were only linear functions of these coordinates. A first validation of this reduced order modeling strategy was successfully carried out.
ContributorsMatney, Andrew (Author) / Mignolet, Marc (Thesis advisor) / Jiang, Hanqing (Committee member) / Spottswood, Stephen (Committee member) / Arizona State University (Publisher)
Created2011
Description
Natural photosynthesis features a complex biophysical/chemical process that requires sunlight to produce energy rich products. It is one of the most important processes responsible for the appearance and sustainability of life on earth. The first part of the thesis focuses on understanding the mechanisms involved in regulation of light harvesting, which is necessary to balance the absorption and utilization of light energy and in that way reduce the effect caused by photooxidative damage. In photosynthesis, carotenoids are responsible not only for collection of light, but also play a major role in protecting the photosynthetic system. To investigate the role of carotenoids in the quenching of the excited state of cyclic tetrapyrroles, two sets of dyads were studied. Both sets of dyads contain zinc phthalocyanine (Pc) covalently attached to carotenoids of varying conjugation lengths. In the first set of dyads, carotenoids were attached to the phthalocyanine via amide linkage. This set of dyads serves as a good model for understanding the molecular "gear-shift" mechanism, where the addition of one double bond can turn the carotenoid from a nonquencher to a very strong quencher of the excited state of a tetrapyrrole. In the second set of dyads, carotenoids were attached to phthalocyanine via a phenyl amino group. Two independent studies were performed on these dyads: femtosecond transient absorption and steady state fluorescence induced by two-photon excitation. In the transient absorption study it was observed that there is an instantaneous population of the carotenoid S1 state after Pc excitation, while two-photon excitation of the optically forbidden carotenoid S1 state shows 1Pc population. Both observations provide a strong indication of the existence of a shared excitonic state between carotenoid and Pc. Similar results were observed in LHC II complexes in plants, supporting the role of such interactions in photosynthetic down regulation. In the second chapter we describe the synthesis of porphyrin dyes functionalized with carboxylate and phosphonate anchoring groups to be used in the construction of photoelectrochemical cells containing a porphyrin-IrO2·nH2O complex immobilized on a TiO2 electrode. The research presented here is a step in the development of high potential porphyrin-metal oxide complexes to be used in the photooxidation of water. The last chapter focuses on developing synthetic strategies for the construction of an artificial antenna system consisting of porphyrin-silver nanoparticle conjugates, linked by DNA of varied length to study the distance dependence of the interaction between nanoparticles and the porphyrin chromophore. Preliminary studies indicate that at the distance of about 7-10 nm between porphyrin and silver nanoparticle is where the porphyrin absorption leading to fluorescence shows maximum enhancement. These new hybrid constructs will be helpful for designing efficient light harvesting systems.
ContributorsPillai, Smitha (Author) / Moore, Ana (Thesis advisor) / Moore, Thomas (Committee member) / Gould, Ian (Committee member) / Arizona State University (Publisher)
Created2011
Description
Sinaloa, a coastal state in the northwest of Mexico, is known for irrigated conventional agriculture, and is considered one of the greatest successes of the Green Revolution. With the neoliberal reforms of the 1990s, Sinaloa farmers shifted out of conventional wheat, soy, cotton, and other commodities and into white maize, a major food staple in Mexico that is traditionally produced by millions of small-scale farmers. Sinaloa is now a major contributor to the national food supply, producing 26% of total domestic white maize production. Research on Sinaloa's maize has focused on economic and agronomic components. Little attention, however, has been given to the environmental sustainability of Sinaloa's expansion in maize. With uniquely biodiverse coastal and terrestrial ecosystems that support economic activities such as fishing and tourism, the environmental consequences of agriculture in Sinaloa are important to monitor. Agricultural sustainability assessments have largely focused on alternative agricultural approaches, or espouse alternative philosophies that are biased against conventional production. Conventional agriculture, however, provides a significant portion of the world's calories. In addition, incentives such as federal subsidies and other institutions complicate transitions to alternative modes of production. To meet the agricultural sustainability goals of food production and environmental stewardship, we must put conventional agriculture on a more sustainable path. One step toward achieving this is structuring agricultural sustainability assessments around achievable goals that encourage continual adaptations toward sustainability. I attempted this in my thesis by assessing conventional maize production in Sinaloa at the regional/state scale using network analysis and incorporating stakeholder values through a multicriteria decision analysis approach. The analysis showed that the overall sustainability of Sinaloa maize production is far from an ideal state. I made recommendations on how to improve the sustainability of maize production, and how to better monitor the sustainability of agriculture in Sinaloa.
ContributorsBausch, Julia Christine (Author) / Eakin, Hallie (Thesis advisor) / Bojórquez-Tapia, Luis (Committee member) / Childers, Daniel L. (Committee member) / Arizona State University (Publisher)
Created2011
Description
Damage assessment and residual useful life estimation (RULE) are essential for aerospace, civil and naval structures. Structural Health Monitoring (SHM) attempts to automate the process of damage detection and identification. Multiscale modeling is a key element in SHM. It not only provides important information on the physics of failure, such as damage initiation and growth, the output can be used as "virtual sensing" data for detection and prognosis. The current research is part of an ongoing multidisciplinary effort to develop an integrated SHM framework for metallic aerospace components. In this thesis a multiscale model has been developed by bridging the relevant length scales, micro, meso and macro (or structural scale). Micro structural representations obtained from material characterization studies are used to define the length scales and to capture the size and orientation of the grains at the micro level. Parametric studies are conducted to estimate material parameters used in this constitutive model. Numerical and experimental simulations are performed to investigate the effects of Representative Volume Element (RVE) size, defect area fraction and distribution. A multiscale damage criterion accounting for crystal orientation effect is developed. This criterion is applied for fatigue crack initial stage prediction. A damage evolution rule based on strain energy density is modified to incorporate crystal plasticity at the microscale (local). Optimization approaches are used to calculate global damage index which is used for the RVE failure prediciton. Potential cracking directions are provided from the damage criterion simultaneously. A wave propagation model is incorporated with the damage model to detect changes in sensing signals due to plastic deformation and damage growth.
ContributorsLuo, Chuntao (Author) / Chattopadhyay, Aditi (Thesis advisor) / Papandreou-Suppappola, Antonia (Committee member) / Jiang, Hanqing (Committee member) / Dai, Lenore (Committee member) / Li, Jian (Committee member) / Arizona State University (Publisher)
Created2011
Description
Given the process of tumorigenesis, biological signaling pathways have become of interest in the field of oncology. Many of the regulatory mechanisms that are altered in cancer are directly related to signal transduction and cellular communication. Thus, identifying signaling pathways that have become deregulated may provide useful information to better understanding altered regulatory mechanisms within cancer. Many methods that have been created to measure the distinct activity of signaling pathways have relied strictly upon transcription profiles. With advancements in comparative genomic hybridization techniques, copy number data has become extremely useful in providing valuable information pertaining to the genomic landscape of cancer. The purpose of this thesis is to develop a methodology that incorporates both gene expression and copy number data to identify signaling pathways that have become deregulated in cancer. The central idea is that copy number data may significantly assist in identifying signaling pathway deregulation by justifying the aberrant activity being measured in gene expression profiles. This method was then applied to four different subtypes of breast cancer resulting in the identification of signaling pathways associated with distinct functionalities for each of the breast cancer subtypes.
ContributorsTrevino, Robert (Author) / Kim, Seungchan (Thesis advisor) / Ringner, Markus (Committee member) / Liu, Huan (Committee member) / Arizona State University (Publisher)
Created2011
Description
This dissertation describes development of a procedure for obtaining high quality, optical grade sand coupons from frozen sand specimens of Ottawa 20/30 sand for image processing and analysis to quantify soil structure along with a methodology for quantifying the microstructure from the images. A technique for thawing and stabilizing frozen core samples was developed using optical grade Buehler® Epo-Tek® epoxy resin, a modified triaxial cell, a vacuum/reservoir chamber, a desiccator, and a moisture gauge. The uniform epoxy resin impregnation required proper drying of the soil specimen, application of appropriate confining pressure and vacuum levels, and epoxy mixing, de-airing and curing. The resulting stabilized sand specimen was sectioned into 10 mm thick coupons that were planed, ground, and polished with progressively finer diamond abrasive grit levels using the modified Allied HTP Inc. polishing method so that the soil structure could be accurately quantified using images obtained with the use of an optical microscopy technique. Illumination via Bright Field Microscopy was used to capture the images for subsequent image processing and sand microstructure analysis. The quality of resulting images and the validity of the subsequent image morphology analysis hinged largely on employment of a polishing and grinding technique that resulted in a flat, scratch free, reflective coupon surface characterized by minimal microstructure relief and good contrast between the sand particles and the surrounding epoxy resin. Subsequent image processing involved conversion of the color images first to gray scale images and then to binary images with the use of contrast and image adjustments, removal of noise and image artifacts, image filtering, and image segmentation. Mathematical morphology algorithms were used on the resulting binary images to further enhance image quality. The binary images were then used to calculate soil structure parameters that included particle roundness and sphericity, particle orientation variability represented by rose diagrams, statistics on the local void ratio variability as a function of the sample size, and the local void ratio distribution histograms using Oda's method and Voronoi tessellation method, including the skewness, kurtosis, and entropy of a gamma cumulative probability distribution fit to the local void ratio distribution.
ContributorsCzupak, Zbigniew David (Author) / Kavazanjian, Edward (Thesis advisor) / Zapata, Claudia (Committee member) / Houston, Sandra (Committee member) / Arizona State University (Publisher)
Created2011
Description
Obesity in Hispanic youth has reached alarmingly high levels, increasing the risk of type 2 diabetes, hyperlipidemia, hypertension, and cardiovascular disease. In Mexican American children ages 6-11 years, 41.7% are overweight and obese, 24.7% are obese and 19.6% have a Body Mass Index (BMI) greater than the 97th percentile. While personal, behavioral, and environmental factors contribute to these high rates, emerging literature suggests acculturation, self-efficacy and social support are key influences. The one-group, pre- and post-test, quasi-experimental design used a community-based participatory research (CBPR) method to test the feasibility, acceptability, and preliminary efficacy of the 8-week intervention. Social Cognitive Theory (SCT) was used to guide the design. Measurements included an analysis of recruitment, retention, participant satisfaction, observation of intervention sessions, paired t-tests, effect sizes, and bivariate correlations between study variables (acculturation, nutrition and physical activity [PA] knowledge, attitude and behaviors, perceived confidence and social support) and outcome variables (BMI z-score, waist circumference and BP percentile) Findings showed the SSLN program was feasible and acceptable. Participants (n = 16) reported that the curriculum was fun and they learned about nutrition and PA. The retention rate was 94%. The preliminary effects on adolescent nutrition and PA behaviors showed mixed results with small-to-medium effect sizes for nutrition knowledge and attitude, PA and sedentary behavior. Correlation analysis among acculturation and study variables was not significant. Positive associations were found between perceived confidence in eating and nutrition attitude (r = .61, p < .05) and nutrition behavior (r = .62, p < .05), perceived confidence in exercise and nutrition behavior (r = .66, p < .05), social support from family for exercise and PA behavior (r = .67, p < .01) and social support from friends for exercise and PA behavior (r = .56, p < .05). These findings suggest a culturally specific healthy eating and activity program for adolescents was feasible and acceptable and warrants further investigation, since it may fill a gap in existing obesity programs designed for Hispanic youth. The positive correlations suggest further testing of the theoretical model.
ContributorsStevens, Carol (Author) / Gance-Cleveland, Bonnie (Thesis advisor) / Komnenich, Pauline (Committee member) / Shaibi, Gabriel (Committee member) / Arcoleo, Kimberly (Committee member) / Arizona State University (Publisher)
Created2011
Description
Among the general US population, cardiovascular disease (CVD) is the main cause of mortality for Mexican-Americans. CVD is less prevalent among Mexican-Americans than non-Hispanic Whites or African Americans. However, there is limited research regarding the factors associated with increased CVD risk among Mexican-Americans. Thus, this cross-sectional study was conducted to evaluate the effects of non-biological factors (income, education, employment, acculturation) and diet on CVD risk factors in 75 Mexican-American adults (26 males, 49 females; age=37.6±9.3 y, BMI=28.9±5.3 kg/m2, systolic BP=117±11 mmHg, diastolic BP=73±9 mmHg, LDL cholesterol=114±32 mg/dL, HDL cholesterol=44±11 mg/dL, triglycerides=115±61 mg/dL, serum glucose=92±7 mg/dL). Aside from collecting anthropometric measurements, blood pressure, and measuring fasting blood lipids, glucose, and insulin, information about participants' socioeconomic status, income, employment, education, and acculturation were gathered using a survey. Diet data was collected using the Southwestern Food Frequency Questionnaire. Weight, BMI, and waist circumference were significantly greater for those with a monthly income of <$3000 than for those earning >$3000 (81±15 kg vs. 71±15 kg; 29.8±4.6 kg/m2 vs. 26.5±5.1 kg/m2; 98±12 cm vs. 89±14 cm; respectively) and with an education level of high school graduate or less than for those with some college (84±16 kg vs. 72±14 kg; 30.6±4.2 kg/m2 vs. 26.9±4.9 kg/m2; 100±11 cm vs. 91±13 cm; respectively). HDL-C was higher for those with a monthly income of >$3000 than those earning <$3000 (49±12 mg/dL vs. 41±10 mg/dL), those with some college education than those with high school or less (47±10 mg/dL vs. 37±9 mg/dL), and for those employed than those not employed (46±10 mg/dL vs. 40±12 mg/dL). There was no association between acculturation and CVD risk factors. Percent of energy consumed from fat was greater and percent of energy from carbohydrates was lower in those earning <$3000 monthly than those earning >$3000 (32±5% vs. 29±3%; 52±8% vs. 56±4%; respectively). Greater acculturation to the Anglo culture was negatively correlated with body fat percentage (r=-0.238, p=0.043) and serum glucose (r=-0.265, p=0.024). Overall, these results suggest that factors related to sociocultural and socioeconomic status may affect cardiometabolic disease risk in Mexican-Americans living in the Phoenix metropolitan area.
ContributorsFarr, Kristin Jennette (Author) / Vega-Lopez, Sonia (Thesis advisor) / Shaibi, Gabriel Q (Committee member) / Mayol-Kreiser, Sandra N (Committee member) / Arizona State University (Publisher)
Created2011
Description
All-dielectric self-supporting (ADSS) fiber optic cables are used for data transfer by the utilities. They are installed along high voltage transmission lines. Dry band arcing, a phenomenon which is observed in outdoor insulators, is also observed in ADSS cables. The heat developed during dry band arcing damages the ADSS cables' outer sheath. A method is presented here to rate the cable sheath using the power developed during dry band arcing. Because of the small diameter of ADSS cables, mechanical vibration is induced in ADSS cable. In order to avoid damage, vibration dampers known as spiral vibration dampers (SVD) are used over these ADSS cables. These dampers are installed near the armor rods, where the presence of leakage current and dry band activity is more. The effect of dampers on dry band activity is investigated by conducting experiments on ADSS cable and dampers. Observations made from the experiments suggest that the hydrophobicity of the cable and damper play a key role in stabilizing dry band arcs. Hydrophobic-ity of the samples have been compared. The importance of hydrophobicity of the samples is further illustrated with the help of simulation results. The results indi-cate that the electric field increases at the edges of water strip. The dry band arc-ing phenomenon could thus be correlated to the hydrophobicity of the outer sur-face of cable and damper.
ContributorsPrabakar, Kumaraguru (Author) / Karady, George G. (Thesis advisor) / Vittal, Vijay (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2011
Description
African Swine Fever (ASF), endemic in many African countries, is now spreading to other continents. Though ASF is capable of incurring serious economic losses in affected countries, no vaccine exists to provide immunity to animals. Disease control relies largely on rapid diagnosis and the implementation of movement restrictions and strict eradication programs. Developing a scalable, accurate and low cost diagnostic for ASF will be of great help for the current situation. CIM's 10K random peptide microarray is a new high-throughput platform that allows systematic investigations of immune responses associated with disease and shows promise as a diagnostic tool. In this study, this new technology was applied to characterize the immune responses of ASF virus (ASFV) infections and immunizations. Six sets of sera from ASFV antigen immunized pigs, 6 sera from infected pigs and 20 sera samples from unexposed pigs were tested and analyzed statistically. Results show that both ASFV antigen immunized pigs and ASFV viral infected pigs can be distinguished from unexposed pigs. Since it appears that immune responses to other viral infections are also distinguishable on this platform, it holds the potential of being useful in developing a new ASF diagnostic. The ability of this platform to identify specific ASFV antibody epitopes was also explored. A subtle motif was found to be shared among a set of peptides displaying the highest reactivity for an antigen specific antibody. However, this motif does not seem to match with any antibody epitopes predicted by a linear antibody epitope prediction.
ContributorsXiao, Liang (Author) / Sykes, Kathryn (Thesis advisor) / Zhao, Zhan-Gong (Committee member) / Stafford, Phillip (Committee member) / Arizona State University (Publisher)
Created2011