Description
Two-dimensional vision-based measurement is an ideal choice for measuring small or fragile parts that could be damaged using conventional contact measurement methods. Two-dimensional vision-based measurement systems can be quite expensive putting the technology out of reach of inventors and others.

Two-dimensional vision-based measurement is an ideal choice for measuring small or fragile parts that could be damaged using conventional contact measurement methods. Two-dimensional vision-based measurement systems can be quite expensive putting the technology out of reach of inventors and others. The vision-based measurement tool design developed in this thesis is a low cost alternative that can be made for less than $500US from off-the-shelf parts and free software. The design is based on the USB microscope. The USB microscope was once considered a toy, similar to the telescopes and microscopes of the 17th century, but has recently started finding applications in industry, laboratories, and schools. In order to convert the USB microscope into a measurement tool, research in the following areas was necessary: currently available vision-based measurement systems, machine vision technologies, microscope design, photographic methods, digital imaging, illumination, edge detection, and computer aided drafting applications. The result of the research was a two-dimensional vision-based measurement system that is extremely versatile, easy to use, and, best of all, inexpensive.
Reuse Permissions
  • Downloads
    PDF (12.8 MB)
    Download count: 1

    Details

    Title
    • Repurposing technology: an innovative low cost two-dimensional noncontact measurement tool
    Contributors
    Date Created
    2011
    Resource Type
  • Text
  • Collections this item is in
    Note
    • thesis
      Partial requirement for: M.S.Tech, Arizona State University, 2011
    • bibliography
      Includes bibliographical references (p. 95-103)
    • Field of study: Technology (Manufacturing engineering technology)

    Citation and reuse

    Statement of Responsibility

    by Linda L. Graham

    Machine-readable links