Description
Nanofluidic devices in which one single-walled carbon nanotube (SWCNT) spans a barrier between two fluid reservoirs were constructed, enabling direct electrical measurement of the transport of ions and molecules. Ion current through these devices is about 2 orders of magnitude larger than that predicted from the bulk resistivity of the electrolyte. Electroosmosis drives excess current, carried by cations, and is found to be the origin of giant ionic current through SWCNT as shown by building an ionic field-effect transistor with a gate electrode embedded in the fluid barrier. Wetting of inside of the semi-conducting SWCNT by water showed the change of its electronic property, turning the electronic SWCNT field-effect transistor to "on" state. These findings provide a new method to investigate and control the ion and molecule behavior at nanoscale.
Download count: 3
Details
Title
- Carbon nanotube based nanofluidic devices
Contributors
- Pang, Pei (Author)
- Lindsay, Stuart (Thesis advisor)
- Ros, Robert (Committee member)
- Shumway, John (Committee member)
- Tao, Nongjian (Committee member)
- Menéndez, Jose (Committee member)
- Arizona State University (Publisher)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2011
Subjects
Resource Type
Collections this item is in
Note
- thesisPartial requirement for: Ph.D., Arizona State University, 2011
- bibliographyIncludes bibliographical references (p. 126-138)
- Field of study: Physics
Citation and reuse
Statement of Responsibility
by Pei Pang