Description
Ordered mesoporous materials have tunable pore sizes between 2 and 50 nm and are characterized by ordered pore structures and high surface areas (~1000 m2/g). This makes them particularly favorable for a number of membrane applications such as protein separation,

Ordered mesoporous materials have tunable pore sizes between 2 and 50 nm and are characterized by ordered pore structures and high surface areas (~1000 m2/g). This makes them particularly favorable for a number of membrane applications such as protein separation, polymer extrusion, nanowire fabrication and membrane reactors. These membranes can be fabricated as top-layers on macroporous supports or as embedded membranes in a dense matrix. The first part of the work deals with the hydrothermal synthesis and water-vapor/oxygen separation properties of supported MCM-48 and a new Al-MCM-48 type membrane for potential use in air conditioning systems. Knudsen-type permeation is observed in these membranes. The combined effect of capillary condensation and the aluminosilicate matrix resulted in the highest separation factor (142) in Al-MCM-48 membranes, with a water vapor permeance of 6×10-8mol/m2Pas. The second part focuses on synthesis of embedded mesoporous silica membranes with helically ordered pores by a novel Counter Diffusion Self-Assembly (CDSA) method. This method is an extension of the interfacial synthesis method for fiber synthesis using tetrabutylorthosilicate (TBOS) and cetyltrimethylammonium bromide (CTAB) as the silica source and surfactant respectively. The initial part of this study determined the effect of TBOS height and humidity on fiber formation. From this study, the range of TBOS heights for best microscopic and macroscopic ordering were established. Next, the CDSA method was used to successfully synthesize membranes, which were characterized to have good support plugging and an ordered pore structure. Factors that influence membrane synthesis and plug microstructure were determined. SEM studies revealed the presence of gaps between the plugs and support pores, which occur due to shrinking of the plug on drying. Development of a novel liquid deposition method to seal these defects constituted the last part of this work. Post sealing, excess silica was removed by etching with hydrofluoric acid. Membrane quality was evaluated at each step using SEM and gas permeation measurements. After surfactant removal by liquid extraction, the membranes exhibited an O2 permeance of 1.65x10-6mol/m2.Pa.s and He/O2 selectivity of 3.30. The successful synthesis of this membrane is an exciting new development in the area of ordered mesoporous membrane technology.
Reuse Permissions
  • Downloads
    PDF (4.3 MB)
    Download count: 4

    Details

    Title
    • Synthesis and characterization of ordered mesoporous silica with controlled macroscopic morphology for membrane applications
    Contributors
    Date Created
    2011
    Resource Type
  • Text
  • Collections this item is in
    Note
    • thesis
      Partial requirement for: Ph.D., Arizona State University, 2011
    • bibliography
      Includes bibliographical references (p. 162-178)
    • Field of study: Chemical engineering

    Citation and reuse

    Statement of Responsibility

    by Shriya Seshadri

    Machine-readable links