Full metadata
Title
Intra-host Dynamics of Malaria Parasites: A Multifaceted Examination of Ecology, Evolution, Drug Resistance, and Competition
Description
To combat the global antimalarial resistance crisis effective resistance management strategies are needed. To do so, I need to gain a better understanding of the ecological interactions occurring within malaria infections. Despite the importance of the complex interplay among co-infecting strains, our current knowledge and empirical data of within-host diversity and malaria disease dynamics is limited. In this thesis, I explore the multifaceted dynamics of malaria infections through an ecological lens. My overall research question is: "How do ecological interactions, including niche complementarity, competition dynamics, and the cost of resistance, shape the outcomes of malaria infections, and what implications does this have on understanding and improving resistance management strategies?” In Chapter II, titled “Niche Complementarity in Malaria Infections” I demonstrate that ecological principles are observed in malarial infections by experimentally manipulating the biodiversity of rodent malaria P. chabaudi infections. I observed that some parasites experienced competitive suppression, others experienced competitive facilitation, while others were not impacted. Next, in Chapter III, titled “Determining the Differential Impact of Competition Between Genetically Distinct Plasmodium falciparum Strains” I investigate the differential effect of competition among six genetically distinct strains. The impact of competition varied between strain combinations, and both suppression and facilitation were observed, but most pairings had no competitive interactions. Lastly, in Chapter IV, titled “Assessing Fitness Costs in Malaria Parasites: A Comprehensive Review and Implications for Drug Resistance Management”, I summarize where the field currently stands and what evidence there is for the presence of a fitness cost, or lack thereof, and I highlight the current gaps in knowledge. I found that evidence from field, in vitro, and animal models are overall suggestive of the presence of a fitness cost, however, these costs were not always found. Amid the current focus on malaria eradication, it is crucial to understand the impact of biodiversity on disease severity. By incorporating an ecological approach to infectious disease systems, I can gain insights on within-host interactions and how they impact parasite fitness and transmissibility.
Date Created
2024
Contributors
- Segovia, Xyonane (Author)
- Huijben, Silvie (Thesis advisor)
- Bean, Heather (Committee member)
- Gile, Gillian (Committee member)
- Hogue, Ian (Committee member)
- Lake, Douglas (Committee member)
- Arizona State University (Publisher)
Topical Subject
Resource Type
Extent
140 pages
Language
eng
Copyright Statement
In Copyright
Primary Member of
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.2.N.193649
Level of coding
minimal
Cataloging Standards
Note
Partial requirement for: Ph.D., Arizona State University, 2024
Field of study: Biology
System Created
- 2024-05-02 02:30:07
System Modified
- 2024-05-02 02:30:14
- 6 months 1 week ago
Additional Formats