Full metadata
Title
Steps Towards Proving Quantum Entanglement
Description
Quantum entanglement, a phenomenon first introduced in the realm of quantum mechanics by the famous Einstein-Podolsky-Rosen (EPR) paradox, has intrigued physicists and philosophers alike for nearly a century. Its implications for the nature of reality, particularly its apparent violation of local realism, have sparked intense debate and spurred numerous experimental investigations. This thesis presents a comprehensive examination of quantum entanglement with a focus on probing its non-local aspects.
Central to this thesis is the development of a detailed project document outlining a proposed experimental approach to investigate the non-local nature of quantum entanglement. Drawing upon recent advancements in quantum technology, including the manipulation and control of entangled particles, the proposed experiment aims to rigorously test the predictions of quantum mechanics against the framework of local realism.
The experimental setup involves the generation of entangled particle pairs, such as photons or ions, followed by the precise manipulation of their quantum states. By implementing a series of carefully designed measurements on spatially separated entangled particles, the experiment seeks to discern correlations that defy explanation within a local realistic framework.
Date Created
2024-05
Contributors
- Wasserbeck, Noah (Author)
- Lukens, Joseph (Thesis director)
- Arenz, Christian (Committee member)
- Barrett, The Honors College (Contributor)
- Electrical Engineering Program (Contributor)
- School of Mathematical and Statistical Sciences (Contributor)
Topical Subject
Resource Type
Extent
24 pages
Copyright Statement
In Copyright
Primary Member of
Peer-reviewed
No
Open Access
No
Series
Academic Year 2023-2024
Handle
https://hdl.handle.net/2286/R.2.N.191897
System Created
- 2024-03-26 03:07:45
System Modified
- 2024-03-28 12:56:10
- 8 months ago
Additional Formats