Full metadata
Title
Innovate to Eradicate: Advancing Public Health Through Novel Vector Control and Surveillance Strategies
Description
Vector control plays an important role in the prevention and control of mosquito-borne diseases (MBDs). As there are no (prophylactic) drugs and/or vaccines available for many arboviral diseases (such as zika, chikungunya, Saint Louis encephalitis, Ross River virus), the frontline approach to prevent or reduce disease morbidity and mortality is through the reduction of the mosquito vector population size and/or reducing vector-human contact using insecticides. Frontline tools in malaria (an MBD caused by a parasite) control and elimination have been drugs (targeting the malaria parasite) and insecticides (targeting the vectors) through indoor residual spraying (IRS) (spraying the internal walls and sometimes the roofs of dwellings with residual insecticides to kill adult mosquito vectors), and long-lasting insecticidal nets (LLINs), while arboviral vectors are frequently targeted using outdoor fogging and space spraying (indoor or outdoor spraying of insecticides to kill adult mosquito vectors). Integrative and novel vector control efforts are urgently needed since the aforementioned tools may not be as effective against those mosquito species that are resistant to insecticides and/or have a different (or changed) behavior allowing them to avoid existing tools. In Chapters 2 and 3, I investigate mosquito vector surveillance in Arizona by (i) discussing the species composition and public health implications of the State’s mosquito fauna, and (ii) comparing the effectiveness of 4 different carbon dioxide (CO2) sources in attracting different mosquito species on the Arizona State University Tempe Campus. In Chapters 4 and 5, I investigate a novel vector control tool by (i) completing a literature review on using electric fields (EFs) to control insects, and (ii) presenting novel data on using Insulated Conductor Wires (ICWs) to generate EFs that prevent host-seeking female Aedes aegypti from entering spaces. In Chapter 6, I discuss the non-target effects of chemical malaria control on other arthropods, including other biological and mechanical infectious disease vectors. Overall, this dissertation highlights the important role that the development of novel surveillance and vector control tools could play in improved mosquito control, which ultimately will reduce disease morbidity and mortality.
Date Created
2024
Contributors
- Jobe, Ndey Bassin (Author)
- Paaijmans, Krijn (Thesis advisor)
- Cease, Arianne (Committee member)
- Hall, Sharon (Committee member)
- Huijben, Silvie (Committee member)
- Arizona State University (Publisher)
Topical Subject
Resource Type
Extent
182 pages
Language
eng
Copyright Statement
In Copyright
Primary Member of
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.2.N.191702
Level of coding
minimal
Cataloging Standards
Note
Partial requirement for: Ph.D., Arizona State University, 2024
Field of study: Biology
System Created
- 2024-03-14 12:00:44
System Modified
- 2024-03-14 12:00:48
- 10 months ago
Additional Formats