Full metadata
Title
CD8+ T cell reactivity to SARS-CoV-2
Description
The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) pandemic, declared in March 2020 resulted in an unprecedented scientific effort that led to the deployment in less than a year of several vaccines to prevent severe disease, hospitalizations, and death from coronavirus disease 2019 (COVID-19). Most vaccine models focus on the production of neutralizing antibodies against the spike (S) to prevent infection. As the virus evolves, new variants emerge that evade neutralizing antibodies produced by natural infection and vaccination, while memory T cell responses are long-lasting and resilient to most of the changes found in variants of concern (VOC). Several lines of evidence support the study of T cell-mediated immunity in SARS-CoV-2 infections. First, T cell reactivity against SARS-CoV-2 is found in both (cluster of differentiation) CD4+ and CD8+ T cell compartments in asymptomatic, mild, and severe recovered COVID-19 patients. Second, an early and stronger CD8+ T cell response correlates with less severe COVID-19 disease [1-4]. Third, both CD4+ and CD8+ T cells that are reactive to SARS-CoV-2 viral antigens are found in healthy unexposed individuals suggesting that cross-reactive and conserved epitopes may be protective against infection.
The current study is focused on the T cell-mediated response, with special attention to conserved, non-spike-cross-reactive epitopes that may be protective against SARS-CoV-2. The first chapter reviews the importance of epitope prediction in understanding the T cell-mediated responses to a pathogen. The second chapter centers on the validation of SARS-CoV-2 CD8+ T cell predicted peptides to find conserved, immunodominant, and immunoprevalent epitopes that can be incorporated into the next generation of vaccines against severe COVID-19 disease. The third chapter explores pre-existing immunity to SARS-CoV-2 in a pre-pandemic cohort and finds two highly immunogenic epitopes that are conserved among human common cold coronaviruses (HCoVs). To end, the fourth chapter explores the concept of T cell receptor (TCR) cross-reactivity by isolating SARS-CoV-2-reactive TCRs to elucidate the mechanisms of cross-reactivity to SARS-CoV-2 and other human coronaviruses (HCoVs).
Date Created
2023
Contributors
- Carmona, Jacqueline (Author)
- Anderson, Karen S (Thesis advisor)
- Lake, Douglas (Thesis advisor)
- Maley, Carlo (Committee member)
- Mangone, Marco (Committee member)
- LaBaer, Joshua (Committee member)
- Arizona State University (Publisher)
Topical Subject
Resource Type
Extent
177 pages
Language
eng
Copyright Statement
In Copyright
Primary Member of
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.2.N.190960
Level of coding
minimal
Cataloging Standards
Note
Partial requirement for: Ph.D., Arizona State University, 2023
Field of study: Molecular and Cellular Biology
System Created
- 2023-12-14 01:59:12
System Modified
- 2023-12-14 01:59:18
- 11 months 2 weeks ago
Additional Formats