Full metadata
Title
The Impact of Laboratory Conditions on the Estimation of Nucleotide Mutation Rates.
Description
Mutation is the source of heritable variation of genotype and phenotype, on which selection may act. Mutation rates describe a fundamental parameter of living things, which influence the rate at which evolution may occur, from viral pathogens to human crops and even to aging cells and the emergence of cancer. An understanding of the variables which impact mutation rates and their estimation is necessary to place mutation rate estimates in their proper contexts. To better understand mutation rate estimates, this research investigates the impact of temperature upon transcription rate error estimates; the impact of growing cells in liquid culture vs. on agar plates; the impact of many in vitro variables upon the estimation of deoxyribonucleic acid (DNA) mutation rates from a single sample; and the mutational hazard induced by expressing clustered regularly interspaced short palindromic repeat (CRISPR) proteins in yeast. This research finds that many of the variables tested did not significantly alter the estimation of mutation rates, strengthening the claims of previous mutation rate estimates across the tree of life by diverse experimental approaches. However, it is clear that sonication is a mutagen of DNA, part of an effort which has reduced the sequencing error rate of circle-seq by over 1,000-fold. This research also demonstrates that growth in liquid culture modestly skews the mutation spectrum of MMR- Escherichia coli, though it does not significantly impact the overall mutation rate. Finally, this research demonstrates a modest mutational hazard of expressing Cas9 and similar CRISPR proteins in yeast cells at an un-targeted genomic locus, though it is possible the indel rate has been increased by an order of magnitude.
Date Created
2023
Contributors
- Baehr, Stephan (Author)
- Lynch, Michael (Thesis advisor)
- Geiler-Samerotte, Kerry (Committee member)
- Mangone, Marco (Committee member)
- Wilson, Melissa (Committee member)
- Arizona State University (Publisher)
Topical Subject
Resource Type
Extent
122 pages
Language
eng
Copyright Statement
In Copyright
Primary Member of
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.2.N.190922
Level of coding
minimal
Cataloging Standards
Note
Partial requirement for: Ph.D., Arizona State University, 2023
Field of study: Molecular and Cellular Biology
System Created
- 2023-12-14 01:51:06
System Modified
- 2023-12-14 01:51:11
- 11 months 2 weeks ago
Additional Formats