Full metadata
Title
Self-Assembled Nucleic Acid Nanomaterials for Biomedical Applications or Structural Determination of Guest Molecules
Description
Originally conceived as a way to scaffold molecules of interest into three-dimensional (3D) crystalline lattices for X ray crystallography, the field of deoxyribonucleic acid (DNA) nanotechnology has dramatically evolved since its inception. The unique properties of DNA nanostructures have promoted their use not only for X ray crystallography, but for a suite of biomedical applications as well. The work presented in this dissertation focuses on both of these exciting applications in the field: 1) Nucleic acid nanostructures as multifunctional drug and vaccine delivery platforms, and 2) 3D DNA crystals for structure elucidation of scaffolded guest molecules.Chapter 1 illustrates how a wide variety of DNA nanostructures have been developed for the delivery of drugs and vaccine components. However, their applications are limited under physiological conditions due to their lack of stability in low salt environments, susceptibility to enzymatic degradation, and tendency for endosomal entrapment. To address these issues, Chapter 2 describes a PEGylated peptide coating molecule was designed to electrostatically adhere to and protect DNA origami nanostructures and to facilitate their cytosolic delivery by peptide-mediated endosomal escape. The development of this molecule will aid in the use of nucleic acid nanostructures for biomedical purposes, such as the delivery of messenger ribonucleic acid (mRNA) vaccine constructs. To this end, Chapter 3 discusses the fabrication of a structured mRNA nanoparticle for more cost-efficient mRNA vaccine manufacture and proposes a multi-epitope mRNA nanostructure vaccine design for targeting human papillomavirus (HPV) type 16-induced head and neck cancers.
DNA nanotechnology was originally envisioned to serve as three-dimensional scaffolds capable of positioning proteins in a rigid array for their structure elucidation by X ray crystallography. Accordingly, Chapter 4 explores design parameters, such as sequence and Holliday junction isomeric forms, for efficient crystallization of 3D DNA lattices. Furthermore, previously published DNA crystal motifs are used to site-specifically position and structurally evaluate minor groove binding molecules with defined occupancies. The results of this study provide significant advancement towards the ultimate goal of the field.
Date Created
2023
Contributors
- Henry, Skylar J.W. (Author)
- Stephanopoulos, Nicholas (Thesis advisor)
- Anderson, Karen (Thesis advisor)
- Blattman, Joseph (Committee member)
- Yan, Hao (Committee member)
- Arizona State University (Publisher)
Topical Subject
Resource Type
Extent
297 pages
Language
eng
Copyright Statement
In Copyright
Primary Member of
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.2.N.190721
Level of coding
minimal
Cataloging Standards
Note
Partial requirement for: Ph.D., Arizona State University, 2023
Field of study: Biochemistry
System Created
- 2023-12-14 12:48:00
System Modified
- 2023-12-14 12:48:07
- 11 months 2 weeks ago
Additional Formats