Full metadata
Title
Neutron Transmutation Doping of Two Dimensional Materials
Description
Doping is the cornerstone of Semiconductor technology, enabling the functionalities of modern digital electronics. Two-dimensional (2D) transition metal dichalcogenides (TMDCs) have tunable direct bandgaps, strong many-body interactions, and promising applications in future quantum information sciences, optoelectronic, spintronic, and valleytronic devices. However, their wafer-scale synthesis and precisely controllable doping are challenging. Moreover, there is no fixed framework to identify the doping concentration, which impedes their process integration for future commercialization. This work utilizes the Neutron Transmutation Doping technique to control the doping uniformly and precisely in TMDCs. Rhenium and Tin dopants are introduced in Tungsten- and Indium-based Chalcogenides, respectively. Fine-tuning over 0.001% doping level is achieved. Precise analytical techniques such as Gamma spectroscopy and Secondary Ion Mass Spectrometry are used to quantify ultra-low doping levels ranging from 0.005-0.01% with minimal error. Dopants in 2D TMDCs often exhibit a broad stokes-shifted emission, with high linewidths, due to extrinsic effects such as substrate disorder and surface adsorbates. A well-defined bound exciton emission induced by Rhenium dopants in monolayer WSe2 and WS2 at liquid nitrogen temperatures is reported along with specific annealing regimes to minimize the defects induced in the Neutron Transmutation process. This work demonstrates a framework for Neutron Doping in 2D materials, which can be a scalable process for controlling doping and doping-induced effects in 2D materials.
Date Created
2023
Contributors
- Lakhavade, Sushant Sambhaji (Author)
- Tongay, Sefaattin (Thesis advisor)
- Alford, Terry (Committee member)
- Yang, Sui (Committee member)
- Arizona State University (Publisher)
Topical Subject
Resource Type
Extent
105 pages
Language
eng
Copyright Statement
In Copyright
Primary Member of
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.2.N.189347
Level of coding
minimal
Cataloging Standards
Note
Partial requirement for: M.S., Arizona State University, 2023
Field of study: Materials Science and Engineering
System Created
- 2023-08-28 05:10:18
System Modified
- 2023-08-28 05:10:23
- 1 year 3 months ago
Additional Formats