Determining the Role of Innate Immune Elements on RNA Viral Replication and Understanding Factors that Impact Adaptive T cell Anti-tumoral Activity Against Metastatic Osteosarcoma (mOS)
Document
Description
The innate immune system serves as an immediate response to pathogenic infection and an informant to the adaptive immune system. The 2′,5′-oligoadenylate (2-5A) synthetase (OAS)–RNase-L system is a component of the innate immune system induced by interferons (IFNs) and serves to eliminate viral infections. In humans, three enzymatically active OAS proteins exist, OAS1, OAS2, and OAS3. Recent evidence suggests variations in cellular localization of OAS proteins may influence the impact and influence of those proteins on viral replication. However, viral suppression mechanisms involving specific OAS proteins are still unclear for most viruses. Here, I overexpress different isoforms of OAS and determined that though viruses within the same family have similar replication strategies, the extent to which each OAS protein impacts viral replication for Flaviviruses, and Alphaviruses varies. In contrast to the innate immune system, the adaptive immune system provides specific and long-lived immune responses. In the context of cancer, T cells have been shown to play a prominent role in tumor regression. It has previously been demonstrated that administration α-CTLA-4/α-PD-L1 immune checkpoint blockade (ICB) to mice inoculated with a K7M2 metastatic osteosarcoma (mOS) cell line resulted in ~50% survival. Here, I sought to determine biological differences among murine responders and non-responders to ICB for mOS to understand better what factors could increase ICB efficacy. A prospective culprit is a variance in circulating antibodies (Abs). I have shown that sera from mice, before inoculation with mOS or ICB, display distinct differences in Ab repertoire between responders and non-responders, suggesting the presence or absence of particular Abs may influence the outcome of ICB. Recent studies have also shown that malleable environmental factors, such as differences in microbiome composition, can yield subsequent changes in circulating Abs.
Strong associations have been made between host-microbiome interactions and their effects on health. Here, I study potential associations of microbiome-mediated impacts on ICB efficacy for mOS. Additionally, I sought to determine potential changes in T-cellular response to mOS due to modulations in microbiome composition and showed that ICB efficacy can change in conjunction with microbiome composition changes in a murine model.