Full metadata
Title
Dissecting the Molecular Mechanism of Temperature Sensing and Regulation in TRP Channels
Description
Receiving signals and responding to the environment is crucial for survival for every living organism. One of those signals is being able to detect environmental and visceral temperatures. Transient receptor potential vanilloid 1 (TRPV1) and transient receptor potential melastatin 8 (TRPM8) are ion channels within cells that allow higher organisms to detect hot and cold temperatures, respectively. These TRP channels are also implicated in diverse physiological roles including pain, obesity, and cancer. As a result, these channels have garnered interest as potential targets for therapeutic interventions. However, the entanglement of TRPV1 and TRPM8 polymodal activation where it responds to a variety of different stimuli has caused adverse side effects of body thermal dysregulation and misregulation when antagonizing these channels as drug targets. This dissertation will dissect the molecular mechanism and regulation of TRPV1 and TRPM8. An in-depth look into the complex and conflicting results in trying to find the key area for thermosensation as well as looking into disentangling the polymodal activation modes in TRPV1. The regulatory mechanism between TRPM8 with phosphoinositide interacting regulator of TRPs (PIRT) and calmodulin will be examined using nuclear magnetic resonance (NMR). A computational, experimental, and methodical approach into ancestral TRPM8 orthologs using whole-cell patch-clamp electrophysiology, calcium mobilization assay, and cellular thermal shift assay (CETSA) to determine whether these modes of activation can be decoupled. Lastly, smaller studies are covered like developing a way to delivery full-length and truncated protein using amphipols to artificial and live cells without the biological regulatory processes and the purification of the TRPM8 transmembrane domain (TMD). In the end, two successful methods were developed to study the polymodal activation of proteins.
Date Created
2023
Contributors
- Luu, Dustin Dean (Author)
- Van Horn, Wade D (Thesis advisor)
- Redding, Kevin E (Committee member)
- Chiu, Po-Lin (Committee member)
- Arizona State University (Publisher)
Topical Subject
Resource Type
Extent
289 pages
Language
eng
Copyright Statement
In Copyright
Primary Member of
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.2.N.189325
Level of coding
minimal
Cataloging Standards
Note
Partial requirement for: Ph.D., Arizona State University, 2023
Field of study: Biochemistry
System Created
- 2023-08-28 05:06:13
System Modified
- 2023-08-28 05:06:19
- 1 year 2 months ago
Additional Formats