Full metadata
Title
Analog-based Neural Network Implementation Using Hexagonal Boron Nitride Memristors
Description
Resistive random-access memory (RRAM) or memristor, is an emerging technology used in neuromorphic computing to exceed the traditional von Neumann obstacle by merging the processing and memory units. Two-dimensional (2D) materials with non-volatile switching behavior can be used as the switching layer of RRAMs, exhibiting superior behavior compared to conventional oxide-based RRAMs. The use of 2D materials allows scaling the resistive switching layer thickness to sub-nanometer dimensions enabling devices to operate with low switching voltages and high programming speeds, offering large improvements in efficiency and performance as well as ultra-dense integration. This dissertation presents an extensive study of linear and logistic regression algorithms implemented with 1-transistor-1-resistor (1T1R) memristor crossbars arrays. For this task, a simulation platform is used that wraps circuit-level simulations of 1T1R crossbars and physics-based model of RRAM to elucidate the impact of device variability on algorithm accuracy, convergence rate, and precision. Moreover, a smart pulsing strategy is proposed for the practical implementation of synaptic weight updates that can accelerate training in real crossbar architectures.
Next, this dissertation reports on the hardware implementation of analog dot-product operation on arrays of 2D hexagonal boron nitride (h-BN) memristors. This extends beyond previous work that studied isolated device characteristics towards the application of analog neural network accelerators based on 2D memristor arrays. The wafer-level fabrication of the memristor arrays is enabled by large-area transfer of CVD-grown few-layer h-BN films. The dot-product operation shows excellent linearity and repeatability, with low read energy consumption, with minimal error and deviation over various measurement cycles. Moreover, the successful implementation of a stochastic linear and logistic regression algorithm in 2D h-BN memristor hardware is presented for the classification of noisy images. Additionally, the electrical performance of novel 2D h-BN memristor for SNN applications is extensively investigated. Then, using the experimental behavior of the h-BN memristor as the artificial synapse, an unsupervised spiking neural network (SNN) is simulated for the image classification task. A novel and simple Spike-Timing-Dependent-Plasticity (STDP)-based dropout technique is presented to enhance the recognition task of the h-BN memristor-based SNN.
Date Created
2023
Contributors
- Afshari, Sahra (Author)
- Sanchez Esqueda, Ivan (Thesis advisor)
- Barnaby, Hugh J (Committee member)
- Seo, Jae-Sun (Committee member)
- Cao, Yu (Committee member)
- Arizona State University (Publisher)
Topical Subject
Resource Type
Extent
117 pages
Language
eng
Copyright Statement
In Copyright
Primary Member of
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.2.N.187773
Level of coding
minimal
Cataloging Standards
Note
Partial requirement for: Ph.D., Arizona State University, 2023
Field of study: Electrical Engineering
System Created
- 2023-06-07 12:26:55
System Modified
- 2023-06-07 12:27:01
- 1 year 7 months ago
Additional Formats