Full metadata
Title
Impact of Variations, Measurement Uncertainty, and Surface Roughness on High-Speed Interconnect Validation
Description
The rapid growth of emerging technologies is placing enormous demand on the seamless access to the extensive amount of data, which drives an unprecedented need for substantially higher data-transfer rates. As 1.6 Terabit Ethernet (TbE) specifications are being developed, high speed interconnects along with advanced materials and processes play a crucial role in technology enabling. However, validation of interconnect performance becomes increasingly challenging at these higher speeds. High-speed interconnect behavior can be reliably predicted if interconnect models are successfully validated against measurements. In industry, it is still not common practice to perform validation at actual use conditions. Therefore, there is an urge for a restructured design methodology and metrology based on temperature and humidity, to set realistic specs for high speed interconnects and reduce probability of failure under variations. Uncertainty quantification and propagation for interconnect validation is critical to assess the correlation quality more objectively, as well as to determine the bottleneck to improve the accuracy, repeatability and reproducibility of all the measurements involved in validation. The purpose of this work is to create a methodology that is both academically rigorous and has a significant impact on industry. This methodology provides an accurate characterization of the electrical performance of interconnects under realistic use-conditions, accompanied by an uncertainty analysis to improve the assessment of correlation quality. Part of this work contributed to the Packaging Benchmark Suite developed by IEEE EPS technical committee on electrical design, modeling, and simulation.
Date Created
2023
Contributors
- Geyik, Cemil S (Author)
- Aberle, James T (Thesis advisor)
- Zhang, Zhichao (Committee member)
- Polka, Lesley A (Committee member)
- Ozev, Sule (Committee member)
- Arizona State University (Publisher)
Topical Subject
Resource Type
Extent
119 pages
Language
eng
Copyright Statement
In Copyright
Primary Member of
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.2.N.187543
Level of coding
minimal
Cataloging Standards
Note
Partial requirement for: Ph.D., Arizona State University, 2023
Field of study: Electrical Engineering
System Created
- 2023-06-07 11:35:01
System Modified
- 2023-06-07 11:35:07
- 1 year 7 months ago
Additional Formats