Full metadata
Title
Developing a Cyber-Physical System for Real-Time Proactive Traffic Control and Management of Mixed Fleet of Vehicles with Various Levels of Autonomy
Description
In this dissertation, a cyber-physical system called MIDAS (Managing Interacting Demand And Supply) has been developed, where the “supply” refers to the transportation infrastructure including traffic controls while the “demand” refers to its dynamic traffic loads. The strength of MIDAS lies in its ability to proactively control and manage mixed vehicular traffic, having various levels of autonomy, through traffic intersections. Using real-time traffic control algorithms MIDAS minimizes wait times, congestion, and travel times on existing roadways. For traffic engineers, efficient control of complicated traffic movements used at diamond interchanges (DI), which interface streets with freeways, is challenging for normal human driven vehicular traffic, let alone for communicationally-connected vehicles (CVs) due to stochastic demand and uncertainties. This dissertation first develops a proactive traffic control algorithm, MIDAS, using forward-recursion dynamic programming (DP), for scheduling large set of traffic movements of non-connected vehicles and CVs at the DIs, over a finite-time horizon. MIDAS captures measurements from fixed detectors and captures Lagrangian measurements from CVs, to estimate link travel times, arrival times and turning movements. Simulation study shows MIDAS’ outperforms (a) a current optimal state-of-art optimal fixed-cycle time control scheme, and (b) a state-of-art traffic adaptive cycle-free scheme.
Subsequently, this dissertation addresses the challenges of improving the road capacity by platooning fully autonomous vehicles (AVs), resulting in smaller headways and greater road utilization. With the MIDAS AI (Autonomous Intersection) control, an effective platooning strategy is developed, and optimal release sequence of AVs is determined using a new forward-recursive DP that minimizes the time-loss delays of AVs. MIDAS AI evaluates the DP decisions every second and communicates optimal actions to the AVs.
Although MIDAS AI’s exact DP achieves optimal solution in almost real-time compared to other exact algorithms, it suffers from scalability. To address this challenge, the dissertation then develops MIDAS RAIC (Reinforced Autonomous Intersection Control), a deep reinforcement learning based real-time dynamic traffic control system for AVs at an intersection. Simulation results show the proposed deep Q-learning architecture trains MIDAS RAIC to learn a near-optimal policy that minimizes the total cumulative time loss delay and performs nearly as well as the MIDAS AI.
Date Created
2023
Contributors
- Potluri, Viswanath (Author)
- Mirchandani, Pitu (Thesis advisor)
- Ju, Feng (Committee member)
- Zhou, Xuesong (Committee member)
- Sefair, Jorge (Committee member)
- Arizona State University (Publisher)
Topical Subject
Resource Type
Extent
150 pages
Language
eng
Copyright Statement
In Copyright
Primary Member of
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.2.N.187468
Level of coding
minimal
Cataloging Standards
Note
Partial requirement for: Ph.D., Arizona State University, 2023
Field of study: Industrial Engineering
System Created
- 2023-06-07 11:18:40
System Modified
- 2023-06-07 11:18:45
- 1 year 7 months ago
Additional Formats