Full metadata
Title
MicroRNAs Regulate Alternative Splicing and Tissue Differentiation
Description
Precise modulation of gene expression is essential for proper tissue and cell-specific differentiation and function. Multiple distinct post-transcriptional regulatory mechanisms, such as miRNA (microRNA)-based regulation and alternative polyadenylation (APA), are an intrinsic part of this modulation and orchestrate intricate pathways to achieve and maintain balanced gene expression.MiRNA-based regulation and APA function through sequence motifs located in the 3’ Untranslated Region (3’UTR) of mRNA transcripts. MiRNAs are short (~22 nt) non-coding RNA molecules that bind target sequences within the 3’UTR of an mRNA transcript, inhibiting its translation or promoting its degradation. APA occurs during RNA transcription termination and leads to the preparation of mature mRNAs with different 3’UTR lengths, allowing shorter 3’UTRs to bypass miRNA regulation.
In addition to these two post-transcriptional forms of regulation, co-transcriptional mechanisms such as alternative RNA splicing, which produces distinct gene products from a precursor mRNA, are also important in controlling gene expression.
While miRNA-based regulation, APA, and alternative RNA splicing are important regulatory mechanisms, there is a lack of comprehensive understanding of how they interact and communicate with each other. This thesis studies these three forms of gene regulation in the nematode C. elegans, with the goal of extracting rules and mechanisms used by each of them in development to establish and maintain somatic tissue identity.
After isolating miRNA targets in multiple C. elegans somatic tissues, it was found that miRNAs can modulate the abundance of hnRNPs and SR proteins, which are known to control alternative RNA splicing in a dosage-dependent manner.To identify tissue-specific miRNAs, a nuclear fluorescent cell sorting (FACS)-based methodology named Nuc-Seq, was developed to isolate and sequence tissue-specific miRNAs from body muscle tissue. Nuc-Seq identified 2,848 muscle-specific protein-coding genes and 16 body muscle-specific miRNAs. This data was used to develop a high-quality body muscle-specific miRNA-APA Interactome which allows studies in regulatory processes in detail.
Taken together, this work highlights some of the complexity of pre- and post-transcriptional gene regulation and sheds light on how miRNA-based regulation, APA, and alternative RNA splicing are interconnected and are responsible for the establishment and maintenance of tissue identity.
Date Created
2023
Contributors
- Schorr, Anna L (Author)
- Mangone, Marco (Thesis advisor)
- Harris, Robin (Committee member)
- Sharma, Shalini (Committee member)
- Varsani, Arvind (Committee member)
- Arizona State University (Publisher)
Topical Subject
Resource Type
Extent
230 pages
Language
eng
Copyright Statement
In Copyright
Primary Member of
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.2.N.187460
Level of coding
minimal
Cataloging Standards
Note
Partial requirement for: Ph.D., Arizona State University, 2023
Field of study: Molecular and Cellular Biology
System Created
- 2023-06-07 11:16:55
System Modified
- 2023-06-07 11:17:00
- 1 year 5 months ago
Additional Formats