Full metadata
Title
Millimeter-Wave Detector Systems and Applications in the Study of Quiescent Galaxy Evolution
Description
Millimeter astronomy unlocks a window to the earliest produced light in the universe, called the Cosmic Microwave Background (CMB). Through analysis of the CMB, overarching features about the universe's evolution and structure can be better understood. Modern millimeter-wave instruments are constantly seeking improvements to sensitivity in the effort to further constrain small CMB anisotropies in both temperature and polarization. As a result, detailed investigations into lesser-known processes of the universe are now becoming possible.
Here I present work on the millimeter-wavelength analysis of z ≈ 1 quiescent galaxy samples, whose conspicuous quenching of star formation is likely the result of active galactic nuclei (AGN) accretion onto supermassive black holes. Such AGN feedback would heat up a galaxy's surrounding circumgalactic medium (CGM). Obscured by signal from cold dust, I isolate the thermal Sunyaev-Zel'dovich effect, a CMB temperature anisotropy produced by hot ionized gas, to measure the CGM's average thermal energy and differentiate between AGN accretion models. I find a median thermal energy that best corresponds with moderate to high levels of AGN feedback. In addition, the radial profile of cold dust associated with the galaxy samples appears to be consistent with large-scale clustering of the universe.
In the endeavor of increasingly efficient millimeter-wave detectors, I also describe the design process for novel multichroic dual-polarization antennas. Paired with extended hemispherical lenslets, simulations of these superconducting antennas show the potential to match or exceed performance compared to similar designs already in use. A prototype detector array, with dual-bowtie and hybrid trapezoidal antennas coupled to microwave kinetic inductance detectors (MKIDs) has been made and is under preparation to be tested in the near future.
Finally, I also present my contributions to the cryogenic readout design of the Ali CMB Polarization Telescope (AliCPT), a large-scale CMB telescope geared towards searching the Northern Hemisphere sky for a unique `B-mode' polarization expected to be produced by primordial gravitational waves. Cryogenic readout is responsible for successful interfacing between room temperature electronics and sensitive detectors operating on AliCPT's sub-Kelvin temperature focal plane. The development of millimeter-wave instruments and future endeavors show great potential for the overall scientific community.
Date Created
2023
Contributors
- Meinke, Jeremy (Author)
- Mauskopf, Philip (Thesis advisor)
- Alarcon, Ricardo (Committee member)
- Scannapieco, Evan (Committee member)
- Trichopoulos, Georgios (Committee member)
- Arizona State University (Publisher)
Topical Subject
Resource Type
Extent
215 pages
Language
eng
Copyright Statement
In Copyright
Primary Member of
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.2.N.187398
Level of coding
minimal
Cataloging Standards
Note
Partial requirement for: Ph.D., Arizona State University, 2023
Field of study: Physics
System Created
- 2023-06-06 07:31:16
System Modified
- 2023-06-06 07:31:24
- 1 year 7 months ago
Additional Formats