Full metadata
Title
SKOPE3D: A Synthetic Keypoint Perception 3D Dataset for Vehicle Pose Estimation
Description
Intelligent transportation systems (ITS) are a boon to modern-day road infrastructure. It supports traffic monitoring, road safety improvement, congestion reduction, and other traffic management tasks. For an ITS, roadside perception capability with cameras, LIDAR, and RADAR sensors is the key. Among various roadside perception technologies, vehicle keypoint detection is a fundamental problem, which involves detecting and localizing specific points on a vehicle, such as the headlights, wheels, taillights, etc. These keypoints can be used to track the movement of the vehicles and their orientation. However, there are several challenges in vehicle keypoint detection, such as the variation in vehicle models and shapes, the presence of occlusion in traffic scenarios, the influence of weather and changing lighting conditions, etc. More importantly, existing traffic perception datasets for keypoint detection are mainly limited to the frontal view with sensors mounted on the ego vehicles. These datasets are not designed for traffic monitoring cameras that are mounted on roadside poles. There’s a huge advantage of capturing the data from roadside cameras as they can cover a much larger distance with a wider field of view in many different traffic scenes, but such a dataset is usually expensive to construct. In this research, I present SKOPE3D: Synthetic Keypoint Perception 3D dataset, a one-of-its-kind synthetic perception dataset generated using a simulator from the roadside perspective. It comes with 2D bounding boxes, 3D bounding boxes, tracking IDs, and 33 keypoints for each vehicle in the scene. The dataset consists of 25K frames spanning over 28 scenes with over 150K vehicles and 4.9M keypoints. A baseline keypoint RCNN model is trained on the dataset and is thoroughly evaluated on the test set. The experiments show the capability of the synthetic dataset and knowledge transferability between synthetic and real-world data.
Date Created
2023
Contributors
- Pahadia, Himanshu (Author)
- Yang, Yezhou (Thesis advisor)
- Lu, Duo (Committee member)
- Farhadi Bajestani, Mohammad (Committee member)
- Arizona State University (Publisher)
Topical Subject
Resource Type
Extent
60 pages
Language
eng
Copyright Statement
In Copyright
Primary Member of
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.2.N.187323
Level of coding
minimal
Cataloging Standards
Note
Partial requirement for: M.S., Arizona State University, 2023
Field of study: Computer Science
System Created
- 2023-06-06 07:17:14
System Modified
- 2023-06-06 07:17:26
- 1 year 7 months ago
Additional Formats