Full metadata
Title
Harnessing Protein-Nucleic Acid Interactions to Engineer Biomolecular Devices
Description
Protein-nucleic acid interactions are ubiquitous in biological systems playing a pivotal role in fundamental processes such as replication, transcription and translation. These interactions have been extensively used to develop biosensors, imaging techniques and diagnostic tools.This dissertation focuses on design of a small molecule responsive biosensor that employs transcription factor/deoxyribonucleic acid (DNA) interactions to detect 10 different analytes including antibiotics such as tetracyclines and erythromycin. The biosensor harnesses the multi-turnover collateral cleavage activity of Cas12a to provide signal amplification in less than an hour that can be monitored using fluorescence as well as on paper based diagnostic devices. In addition, the functionality of this assay was preserved when testing tap water and wastewater spiked with doxycycline. Overall, this biosensor has potential to expand the range of small molecule detection and can be used to identify environmental contaminants.
In second part of the dissertation, interactions between nonribosomal peptide synthetases (NRPS) and ribonucleic acid (RNA) were utilized for programming the synthesis of nonribosomal peptides. RNA scaffolds harboring peptide binding aptamers and interconnected using kissing loops to guide the assembly of NRPS modules modified with corresponding aptamer-binding peptides were built. A successful chimeric assembly of Ent synthetase modules was shown that was characterized by the production of Enterobactin siderophore. It was found that the programmed RNA/NRPS assembly could achieve up to 60% of the yield of wild-type biosynthetic pathway of the iron-chelator enterobactin.
Finally, a cas12a-based detection method for discriminating short tandem repeats where a toehold exchange mechanism was designed to distinguish different numbers of repeats found in Huntington’s disease, Spinocerebellar ataxia type 10 and type 36. It was observed that the system discriminates well when lesser number of repeats are present and provides weaker resolution as the size of DNA strands increases. Additionally, the system can identify Kelch13 mutations such as P553L, N458Y and F446I from the wildtype sequence for Artemisinin resistance detection.
This dissertation demonstrates the great utility of harnessing protein-nucleic acid interactions to construct biomolecular devices for detecting clinically relevant nucleic acid mutations, a variety of small molecule analyte and programming the production of useful molecules.
Date Created
2022
Contributors
- Chaudhary, Soma (Author)
- Green, Alexander (Thesis advisor)
- Stephanopoulos, Nicholas (Committee member)
- Mangone, Marco (Committee member)
- Arizona State University (Publisher)
Topical Subject
Resource Type
Extent
122 pages
Language
eng
Copyright Statement
In Copyright
Primary Member of
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.2.N.171971
Level of coding
minimal
Cataloging Standards
Note
Partial requirement for: Ph.D., Arizona State University, 2022
Field of study: Chemistry
System Created
- 2022-12-20 06:19:18
System Modified
- 2022-12-20 06:19:18
- 2 years ago
Additional Formats