Full metadata
Title
Blame-Free Motion Planning in Hybrid Traffic
Description
Recent advances in autonomous vehicle (AV) technologies have ensured that autonomous driving will soon be present in real-world traffic. Despite the potential of AVs, many studies have shown that traffic accidents in hybrid traffic environments (where both AVs and human-driven vehicles (HVs) are present) are inevitable because of the unpredictability of human-driven vehicles. Given that eliminating accidents is impossible, an achievable goal of designing AVs is to design them in a way so that they will not be blamed for any accident in which they are involved in. This work proposes BlaFT – a Blame-Free motion planning algorithm in hybrid Traffic. BlaFT is designed to be compatible with HVs and other AVs, and will not be blamed for accidents in a structured road environment. Also, it proves that no accidents will happen if all AVs are using the BlaFT motion planner and that when in hybrid traffic, the AV using BlaFT will be blame-free even if it is involved in a collision. The work instantiated scores of BlaFT and HV vehicles in an urban road scape loop in the 'Simulation of Urban MObility', ran the simulation for several hours, and observe that as the percentage of BlaFT vehicles increases, the traffic becomes safer. Adding BlaFT vehicles to HVs also increases the efficiency of traffic as a whole by up to 34%.
Date Created
2022
Contributors
- Park, Sanggu (Author)
- Shrivastava, Aviral (Thesis advisor)
- Wang, Ruoyu (Committee member)
- Yang, Yezhou (Committee member)
- Arizona State University (Publisher)
Topical Subject
Resource Type
Extent
34 pages
Language
eng
Copyright Statement
In Copyright
Primary Member of
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.2.N.171818
Level of coding
minimal
Cataloging Standards
Note
Partial requirement for: M.S., Arizona State University, 2022
Field of study: Computer Engineering
System Created
- 2022-12-20 06:19:18
System Modified
- 2022-12-20 06:19:18
- 1 year 10 months ago
Additional Formats