Full metadata
Title
Learning Analytics and Behavior of Distributed Self-assessment and Reflections in Programming Problem Solving
Description
Distributed self-assessments and reflections empower learners to take the lead on their knowledge gaining evaluation. Both provide essential elements for practice and self-regulation in learning settings. Nowadays, many sources for practice opportunities are made available to the learners, especially in the Computer Science (CS) and programming domain. They may choose to utilize these opportunities to self-assess their learning progress and practice their skill. My objective in this thesis is to understand to what extent self-assess process can impact novice programmers learning and what advanced learning technologies can I provide to enhance the learner’s outcome and the progress. In this dissertation, I conducted a series of studies to investigate learning analytics and students’ behaviors in working on self-assessments and reflection opportunities. To enable this objective, I designed a personalized learning platform named QuizIT that provides daily quizzes to support learners in the computer science domain. QuizIT adopts an Open Social Student Model (OSSM) that supports personalized learning and serves as a self-assessment system. It aims to ignite self-regulating behavior and engage students in the self-assessment and reflective procedure. I designed and integrated the personalized practice recommender to the platform to investigate the self-assessment process. I also evaluated the self-assessment behavioral trails as a predictor to the students’ performance. The statistical indicators suggested that the distributed reflections were associated with the learner's performance. I proceeded to address whether distributed reflections enable self-regulating behavior and lead to better learning in CS introductory courses. From the student interactions with the system, I found distinct behavioral patterns that showed early signs of the learners' performance trajectory. The utilization of the personalized recommender improved the student’s engagement and performance in the self-assessment procedure. When I focused on enhancing reflections impact during self-assessment sessions through weekly opportunities, the learners in the CS domain showed better self-regulating learning behavior when utilizing those opportunities. The weekly reflections provided by the learners were able to capture more reflective features than the daily opportunities. Overall, this dissertation demonstrates the effectiveness of the learning technologies, including adaptive recommender and reflection, to support novice programming learners and their self-assessing processes.
Date Created
2022
Contributors
- Alzaid, Mohammed (Author)
- Hsiao, Ihan (Thesis advisor)
- Davulcu, Hasan (Thesis advisor)
- VanLehn, Kurt (Committee member)
- Nelson, Brian (Committee member)
- Bansal, Srividya (Committee member)
- Arizona State University (Publisher)
Topical Subject
Resource Type
Extent
88 pages
Language
eng
Copyright Statement
In Copyright
Primary Member of
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.2.N.171562
Level of coding
minimal
Cataloging Standards
Note
Partial requirement for: Ph.D., Arizona State University, 2022
Field of study: Computer Science
System Created
- 2022-12-20 12:33:10
System Modified
- 2022-12-20 12:52:47
- 1 year 11 months ago
Additional Formats