Full metadata
Title
Moisture-Controlled CO2 Sorption and Membranes Actively Pumping CO2
Description
CO2 capture from ambient air (often referred to as direct air capture or DAC) is one of the Carbon Dioxide Removal methodologies that may limit Global Warming. High energy demand and high cost are currently serious barriers for large-scale DAC deployments. Moisture-controlled CO2 sorption is a novel technology for DAC, where CO2 sorption cycles are driven solely by changes in surrounding humidity. In contrast to traditional temperature-swing adsorption cycles, water is a cheaper source of exergy than high-grade heat or electricity and moisture-controlled CO2 sorption may reduce the cost of DAC. However, analytic models that describe this sorption system have not been well established, especially in a quantitative manner. In this dissertation the author first establishes both static and kinetic models analytically with bottom-up approaches from the governing equations. These models are of scientific interest and also of industrial importance. They were validated by literature data and custom experiments. In a second part of the dissertation, the author explores the application of moisture-controlled materials in the form of membranes that actively pump CO2 against a concentration gradient. These explorations are guided by the quantitative models developed in the first part of the dissertation. In CO2 separation technologies relying on actively pumping membranes, a moisture-controlled CO2 sorbent is used as either a gas-gas membrane contactor or a gas-liquid membrane contactor. The author experimentally and theoretically determined that a specific commercial anion exchange membrane that was considered a plausible candidate does not satisfy the requirements for such an active membrane as a consequence of its slow kinetics of carbon transport. Requirements for materials to serve as active membranes have been clarified, which is of great interest for industrial application and will provide a starting point for future material design and development.
Date Created
2022
Contributors
- Kaneko, Yuta (Author)
- Lackner, Klaus S (Thesis advisor)
- Green, Matthew D (Thesis advisor)
- Dirks, Gary W (Committee member)
- Wade, Jennifer L (Committee member)
- Freeman, Benny D (Committee member)
- Arizona State University (Publisher)
Topical Subject
Resource Type
Extent
249 pages
Language
eng
Copyright Statement
In Copyright
Primary Member of
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.2.N.171453
Level of coding
minimal
Cataloging Standards
Note
Partial requirement for: Ph.D., Arizona State University, 2022
Field of study: Civil, Environmental and Sustainable Engineering
System Created
- 2022-12-20 12:33:10
System Modified
- 2022-12-20 12:52:47
- 2 years ago
Additional Formats