Description

The trifluoromethyl group is an essential chemical motif in pharmaceutical and agrochemical industries. The trifluoromethyl group has similar steric bulk to a methyl group, but exhibits strongly electron withdrawing properties. As a result, a trifluoromethyl group can provide a molecule

The trifluoromethyl group is an essential chemical motif in pharmaceutical and agrochemical industries. The trifluoromethyl group has similar steric bulk to a methyl group, but exhibits strongly electron withdrawing properties. As a result, a trifluoromethyl group can provide a molecule with enhanced lipophilicity, bioavailability, and metabolic stability, which makes it a commonly used tool to tune activity of agrochemicals and pharmaceutical candidates. There are many methods to generate a new trifluoromethyl moiety, but many of these methods rely on stoichiometric metal reagents or harsh reaction conditions. One strategy to install the trifluoromethyl group under benign conditions is with photoredox catalysis. In the field of photocatalysis, iron has emerged as an alternative for precious metals due to its low cost, earth-abundance, and environmentally benign nature. Methods of trifluoromethylation utilizing iron catalysis do exist, but they often rely on expensive CF3 precursors such as Togni’s Reagent and trifluoromethyl iodide. This thesis demonstrates a method using iron photocatalysis for decarboxylative trifluoromethylation of alkenes using trifluoroacetic acid. We have successfully enabled trifluoromethylation of select methoxy-substituted benzene derivatives as well as a number of alkenes, including those bearing sulfone and ketone groups.

Reuse Permissions
  • 2.61 MB application/pdf

    Download restricted. Please sign in.
    Restrictions Statement

    Barrett Honors College theses and creative projects are restricted to ASU community members.

    Download count: 1

    Details

    Title
    • Development of Iron-Photocatalyzed Decarboxylative Trifluoromethylation of Alkenes
    Contributors
    Date Created
    2022-12
    Resource Type
  • Text
  • Machine-readable links