Description
Studies on underground forums can significantly advance the understanding of cybercrime workflow and underground economies. However, research on underground forums has concentrated on public information with little attention paid to users’ private interactions. Since detailed information will be discussed privately, the failure to investigate private interactions may miss critical intelligence and even misunderstand the entire underground economy. Furthermore, underground forums have evolved into criminal freelance markets where criminals trade illicit products and cybercrime services, allowing unsophisticated people to launch sophisticated cyber attacks. However, current research rarely examines and explores how criminals interact with each other, which makes researchers miss the opportunities to detect new cybercrime patterns proactively. Moreover, in clearnet, criminals are active in exploiting human vulnerabilities to conduct various attacks, and the phishing attack is one of the most prevalent types of cybercrime. Phishing awareness training has been proven to decrease the rate of clicking phishing emails. However, the rate of reporting phishing attacks is unexpectedly low based on recent studies, leaving phishing websites with hours of additional active time before being detected. In this dissertation, I first present an analysis of private interactions in underground forums and introduce machine learning-based approaches to detect hidden connections between users. Secondly, I analyze how criminals collaborate with each other in an emerging scam service in underground forums that exploits the return policies of merchants to get a refund or a replacement without returning the purchased products. Finally, I conduct a comprehensive evaluation of the phishing reporting ecosystem to identify the critical challenges while reporting phishing attacks to enable people to fight against phishers proactively.
Download count: 3
Details
Title
- In the Light and in the Shadows: Human-Centered Analysis in Cybercrime
Contributors
- Sun, Zhibo (Author)
- Ahn, Gail-Joon (Thesis advisor)
- Doupe, Adam (Thesis advisor)
- Bao, Tiffany (Committee member)
- Benjamin, Victor (Committee member)
- Arizona State University (Publisher)
Date Created
The date the item was original created (prior to any relationship with the ASU Digital Repositories.)
2022
Subjects
Resource Type
Collections this item is in
Note
- Partial requirement for: Ph.D., Arizona State University, 2022
- Field of study: Computer Science