Full metadata
Title
Comparison of Evolutionary Strategies and Reinforcement Learning Algorithms on Custom and Non-Conventional Environment
Description
Reinforcement Learning(RL) algorithms have made a remarkable contribution in the eld of robotics and training human-like agents. On the other hand, Evolutionary Algorithms(EA) are not well explored and promoted to use in the robotics field. However, they have an excellent potential to perform well. In thesis work, various RL learning algorithms like Q-learning, Deep Deterministic Policy Gradient(DDPG), and Evolutionary Algorithms(EA) like Harmony Search Algorithm(HSA) are tested for a customized Penalty Kick Robot environment. The experiments are done with both discrete and continuous action space for a penalty kick agent. The main goal is to identify which algorithm suites best in which scenario. Furthermore, a goalkeeper agent is also introduced to block the ball from reaching the goal post using the multiagent learning algorithm.
Date Created
2021
Contributors
- Trivedi, Maitry Ronakbhai (Author)
- Amor, Heni Ben (Thesis advisor)
- Redkar, Sangram (Thesis advisor)
- Sugar, Thomas (Committee member)
- Arizona State University (Publisher)
Topical Subject
Resource Type
Extent
47 pages
Language
eng
Copyright Statement
In Copyright
Primary Member of
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.2.N.161938
Level of coding
minimal
Cataloging Standards
Note
Partial requirement for: M.S., Arizona State University, 2021
Field of study: Computer Science
System Created
- 2021-11-16 05:20:54
System Modified
- 2021-11-30 12:51:28
- 2 years 11 months ago
Additional Formats