Full metadata
Title
Millimeter-Wave and Terahertz Reconfigurable Apertures for Imaging and Wireless Communication Applications
Description
This work focuses on the analysis and design of large-scale millimeter-wave andterahertz (mmWave/THz) beamforming apertures (e.g., reconfigurable reflective surfaces–
RRSs). As such, the small wavelengths and ample bandwidths of these frequencies enable
the development of high-spatial-resolution imaging and high-throughput wireless
communication systems that leverage electrically large apertures to form high-gain
steerable beams.
For the rigorous evaluation of these systems’ performance in realistic application
scenarios, full-wave simulations are needed to capture all the exhibited electromagnetic
phenomena. However, the small wavelengths of mmWave/THz bands lead to enormous
meshes in conventional full-wave simulators. Thus, a novel numerical decomposition
technique is presented, which decomposes the full-wave models in smaller domains with
less meshed elements, enabling their computationally efficient analysis. Thereafter, this
method is leveraged to study a novel radar configuration that employs a rotating linear
antenna with beam steering capabilities to form 3D images. This imaging process requires
fewer elements to carry out high-spatial-resolution imaging compared to traditional 2D
phased arrays, constituting a perfect candidate in low-profile, low-cost applications.
Afterward, a high-yield nanofabrication technique for mmWave/THz graphene
switches is presented. The measured graphene sheet impedances are incorporated into
equivalent circuit models of coplanar switches to identify the optimum mmWave/THz
switch topology that would enable the development of large-scale RRSs.ii
Thereon, the process of integrating the optimized graphene switches into largescale mmWave/THz RRSs is detailed. The resulting RRSs enable dynamic beam steering
achieving 4-bits of phase quantization –for the first time in the known literature–
eliminating the parasitic lobes and increasing the aperture efficiency. Furthermore, the
devised multi-bit configurations use a single switch-per-bit topology retaining low system
complexity and RF losses. Finally, single-bit RRSs are modified to offer single-lobe
patterns by employing a surface randomization technique. This approach allows for the use
of low-complexity single-bit configurations to suppress the undesired quantization lobes
without residing to the use of sophisticated multi-bit topologies.
The presented concepts pave the road toward the implementation and proliferation
of large-scale reconfigurable beamforming apertures that can serve both as mmWave/THz
imagers and as relays or base stations in future wireless communication applications.
Date Created
2021
Contributors
- Theofanopoulos, Panagiotis (Author)
- Trichopoulos, Georgios (Thesis advisor)
- Balanis, Constantine (Committee member)
- Aberle, James (Committee member)
- Bliss, Dan (Committee member)
- Groppi, Christopher (Committee member)
- Arizona State University (Publisher)
Topical Subject
Resource Type
Extent
245 pages
Language
eng
Copyright Statement
In Copyright
Primary Member of
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.2.N.161759
Level of coding
minimal
Cataloging Standards
Note
Partial requirement for: Ph.D., Arizona State University, 2021
Field of study: Electrical Engineering
System Created
- 2021-11-16 03:47:12
System Modified
- 2021-11-30 12:51:28
- 3 years ago
Additional Formats