Interaction of Charge Carriers with Defects at Interfaces and Grain Boundaries in Compound Semiconductors

Document
Description
Realization of efficient, high-bandgap photovoltaic cells produced using economically viable methods is a technological advance that could change the way we generate and use energy, and thereby accelerate the development of human civilization. There is a need to engineer a

Realization of efficient, high-bandgap photovoltaic cells produced using economically viable methods is a technological advance that could change the way we generate and use energy, and thereby accelerate the development of human civilization. There is a need to engineer a semiconductor material for solar cells, particularly multijunction cells, that has high (1.6-2.0 eV) bandgap, has relatively inactive defects, is thermodynamically stable under normal operating conditions with the potential for cost-effective thin-film growth in mass production.This work focuses on a material system made of gallium, indium, and phosphorus – the ternary semiconductor GaInP. GaInP based photovoltaic cells in single-crystal form have demonstrated excellent power conversion efficiency, however, growth of single-crystal GaInP is prohibitively expensive. While growth of polycrystalline GaInP is expected to lower production costs, polycrystalline GaInP is also expected to have a high density of electronically active defects, about which little is reported in scientific literature. This work presents the first study of synthesis, and structural and optoelectronic characterization of polycrystalline GaInP thin films. In addition, this work models the best performance of polycrystalline solar cells achievable with a given grain size with grain-boundary/surface recombination velocity as a variable parameter. The effects of defect characteristics at the surface and layer properties such as doping and thickness on interface recombination velocity are also modeled. Recombination velocities at the free surface of single-crystal GaInP and after deposition of various dielectric layers on GaInP are determined experimentally using time-resolved photoluminescence decay measurements. In addition, experimental values of bulk lifetime and surface recombination velocity in well-passivated single crystal AlInP-GaInP based double heterostructures are also measured for comparison to polycrystalline material systems. A novel passivation method – aluminum-assisted post-deposition treatment or Al-PDT – was developed which shows promise as a general passivation and material improvement technique for polycrystalline thin films. In the GaInP system, this aluminum post-deposition treatment has demonstrated improvement in the minority carrier lifetime to 44 ns at 80 K. During development of the passivation process, aluminum diffusivity in GaInP was measured using TEM-EDS line scans. Introduction, development, and refinement of this novel passivation mechanism in polycrystalline GaInP could initiate the development of a new family of passivation treatments, potentially improving the optoelectronic response of other polycrystalline compound semiconductors as well.