Description
Touch plays a vital role in maintaining human relationships through social andemotional communications. This research proposes a multi-modal haptic display capable of generating vibrotactile and thermal haptic signals individually and simultaneously. The main objective for creating this device is to explore the

Touch plays a vital role in maintaining human relationships through social andemotional communications. This research proposes a multi-modal haptic display capable of generating vibrotactile and thermal haptic signals individually and simultaneously. The main objective for creating this device is to explore the importance of touch in social communication, which is absent in traditional communication modes like a phone call or a video call. By studying how humans interpret haptically generated messages, this research aims to create a new communication channel for humans. This novel device will be worn on the user's forearm and has a broad scope of applications such as navigation, social interactions, notifications, health care, and education. The research methods include testing patterns in the vibro-thermal modality while noting its realizability and accuracy. Different patterns can be controlled and generated through an Android application connected to the proposed device via Bluetooth. Experimental results indicate that the patterns SINGLE TAP and HOLD/SQUEEZE were easily identifiable and more relatable to social interactions. In contrast, other patterns like UP-DOWN, DOWN-UP, LEFTRIGHT, LEFT-RIGHT, LEFT-DIAGONAL, and RIGHT-DIAGONAL were less identifiable and less relatable to social interactions. Finally, design modifications are required if complex social patterns are needed to be displayed on the forearm.
Reuse Permissions
  • Downloads
    PDF (2.6 MB)
    Download count: 1

    Details

    Title
    • Vibro-Thermal Haptic Display for Socio-Emotional Communication Through Pattern Generations
    Contributors
    Date Created
    2021
    Resource Type
  • Text
  • Collections this item is in
    Note
    • Partial requirement for: M.S., Arizona State University, 2021
    • Field of study: Electrical Engineering

    Machine-readable links