Full metadata
Title
Investigating the Role of APOE2 in Alzheimer's Disease Using Human Induced Pluripotent Stem Cell Derived Neurons and Astrocytes
Description
Genome wide association studies (GWAS) have identified polymorphism in the Apolipoprotein E (APOE) gene to be the most prominent risk factor for Alzheimer’s disease (AD). Compared to individuals homozygous for the APOE3 variant, individuals with the APOE4 variant have a significantly elevated risk of AD. On the other hand, longitudinal studies have shown that the presence of the APOE2 variant reduces lifetime risk of developing AD by 40 percent. While there has been significant research that has identified the risk-inducing effects of APOE4, the underlying mechanisms by which APOE2 influences AD onset and progression have not been extensively explored. The hallmarks of AD pathology manifest in human neurons in the form of extracellular amyloid deposits and intracellular neurofibrillary tangles, whereas astrocytes are the primary source of the APOE protein in the brain. In this study, an isogenic human induced pluripotent stem cell (hiPSC)-based system is utilized to demonstrate that conversion of APOE3 to APOE2 greatly reduced the production of amyloid-beta (Aβ) peptides in hiPSC-derived neural cultures. Mechanistically, analysis of pure populations of neurons and astrocytes derived from these neural cultures revealed that mitigating effects of APOE2 is mediated by cell autonomous and non-autonomous effects. In particular, it was demonstrated the reduction in Aβ and pathogenic β-C-terminal fragments (APP-βCTF) is potentially driven by a mechanism related to non-amyloidogenic processing of amyloid precursor protein (APP), suggesting a gain of protective function of the APOE2 variant. Together, this study provides insights into the risk-modifying effects associated with the APOE2 allele and establishes a platform to probe the mechanisms by which APOE2 enhances neuroprotection against AD.
Date Created
2021
Contributors
- Raman, Sreedevi (Author)
- Brafman, David (Thesis advisor)
- Smith, Barbara (Committee member)
- Plaiser, Christopher (Committee member)
- Wang, Xiao (Committee member)
- Tian, Xiaojun (Committee member)
- Arizona State University (Publisher)
Topical Subject
Resource Type
Extent
170 pages
Language
eng
Copyright Statement
In Copyright
Primary Member of
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.2.N.161295
Level of coding
minimal
Cataloging Standards
Note
Partial requirement for: Ph.D., Arizona State University, 2021
Field of study: Biomedical Engineering
System Created
- 2021-11-16 11:56:23
System Modified
- 2021-11-30 12:51:28
- 2 years 11 months ago
Additional Formats