Full metadata
Memory CD8+ T cells protect against secondary viral infections. They develop and maintain exclusively in circulation (e.g. central memory - Tcm) or are excluded from re-circulation (resident memory - Trm). The extracellular ATP receptor P2RX7 promotes both Tcm and Trm generation. High (P2RX7hi) P2RX7-expressing early effector cells show survival, memory and pluripotency genes. Conversely, many terminal effector (TE) and apoptosis genes are upregulated in low (P2RX7lo) P2RX7-expressing cells. Among these genes is the zinc-finger transcriptional repressor Zeb2, which promotes TE differentiation at the expense of the memory cell pool. Given that Zeb2 was higher in P2RX7lo early effector cells, we postulated that Zeb2 ablation would allow P2RX7-deficient CD8+ T cells to skew towards memory subsets. To test this, we used RNP-based CRISPR-Cas9 to knockout Zeb2 in wild type or P2RX7-deficient P14 cells. At the memory timepoint, Zeb2 ablation led to a rescue of the ability of P2RX7-deficient cells to differentiate into the CD62L+ Tcm and CD69hiCD103hi Trm subsets, as well as increase the population of each. Our data suggest that P2RX7 imprints a pro-memory signature that is, to some extent, dependent on the negative regulation of Zeb2.
- Van Dijk, Sarah (Author)
- Holechek, Susan (Thesis director)
- Borges da Silvs, Henrique (Committee member)
- Barrett, The Honors College (Contributor)
- School of Life Sciences (Contributor)
- School of Molecular Sciences (Contributor)
- School of International Letters and Cultures (Contributor)
- 2021-11-12 08:21:24
- 2023-01-10 11:47:14
- 2 years ago