Full metadata
Title
Image Restoration for Non-Traditional Camera Systems
Description
Cameras have become commonplace with wide-ranging applications of phone photography, computer vision, and medical imaging. With a growing need to reduce size and costs while maintaining image quality, the need to look past traditional style of cameras is becoming more apparent. Several non-traditional cameras have shown to be promising options for size-constraint applications, and while they may offer several advantages, they also usually are limited by image quality degradation due to optical or a need to reconstruct a captured image. In this thesis, we take a look at three of these non-traditional cameras: a pinhole camera, a diffusion-mask lensless camera, and an under-display camera (UDC).
For each of these cases, I present a feasible image restoration pipeline to correct for their particular limitations. For the pinhole camera, I present an early pipeline to allow for practical pinhole photography by reducing noise levels caused by low-light imaging, enhancing exposure levels, and sharpening the blur caused by the pinhole. For lensless cameras, we explore a neural network architecture that performs joint image reconstruction and point spread function (PSF) estimation to robustly recover images captured with multiple PSFs from different cameras. Using adversarial learning, this approach achieves improved reconstruction results that do not require explicit knowledge of the PSF at test-time and shows an added improvement in the reconstruction model’s ability to generalize to variations in the camera’s PSF. This allows lensless cameras to be utilized in a wider range of applications that require multiple cameras without the need to explicitly train a separate model for each new camera. For UDCs, we utilize a multi-stage approach to correct for low light transmission, blur, and haze. This pipeline uses a PyNET deep neural network architecture to perform a majority of the restoration, while additionally using a traditional optimization approach which is then fused in a learned manner in the second stage to improve high-frequency features. I show results from this novel fusion approach that is on-par with the state of the art.
For each of these cases, I present a feasible image restoration pipeline to correct for their particular limitations. For the pinhole camera, I present an early pipeline to allow for practical pinhole photography by reducing noise levels caused by low-light imaging, enhancing exposure levels, and sharpening the blur caused by the pinhole. For lensless cameras, we explore a neural network architecture that performs joint image reconstruction and point spread function (PSF) estimation to robustly recover images captured with multiple PSFs from different cameras. Using adversarial learning, this approach achieves improved reconstruction results that do not require explicit knowledge of the PSF at test-time and shows an added improvement in the reconstruction model’s ability to generalize to variations in the camera’s PSF. This allows lensless cameras to be utilized in a wider range of applications that require multiple cameras without the need to explicitly train a separate model for each new camera. For UDCs, we utilize a multi-stage approach to correct for low light transmission, blur, and haze. This pipeline uses a PyNET deep neural network architecture to perform a majority of the restoration, while additionally using a traditional optimization approach which is then fused in a learned manner in the second stage to improve high-frequency features. I show results from this novel fusion approach that is on-par with the state of the art.
Date Created
2020
Contributors
- Rego, Joshua D (Author)
- Jayasuriya, Suren (Thesis advisor)
- Blain Christen, Jennifer (Thesis advisor)
- Turaga, Pavan (Committee member)
- Arizona State University (Publisher)
Topical Subject
Resource Type
Extent
79 pages
Language
eng
Copyright Statement
In Copyright
Primary Member of
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.I.63086
Level of coding
minimal
Note
Masters Thesis Electrical Engineering 2020
System Created
- 2021-01-14 09:27:59
System Modified
- 2021-08-26 09:47:01
- 3 years 2 months ago
Additional Formats