Full metadata
Title
Synthesis of Highly Conductive Stretchable Interconnect with Polymer Composite and its Evaluation Against Market-Available Materials
Description
Flexible conducting materials have been in the forefront of a rapidly transforming electronics industry, focusing on wearable devices for a variety of applications in recent times. Over the past few decades, bulky, rigid devices have been replaced with a surging demand for thin, flexible, light weight, ultra-portable yet high performance electronics. The interconnects available in the market today only satisfy a few of the desirable characteristics, making it necessary to compromise one feature over another. In this thesis, a method to prepare a thin, flexible, and stretchable inter-connect is presented with improved conductivity compared to previous achievements. It satisfies most mechanical and electrical conditions desired in the wearable electronics industry. The conducting composite, prepared with the widely available, low cost silicon-based organic polymer - polydimethylsiloxane (PDMS) and silver (Ag), is sandwiched between two cured PDMS layers. These protective layers improve the mechanical stability of the inter-connect. The structure can be stretched up to 120% of its original length which can further be enhanced to over 250% by cutting it into a serpentine shape without compromising its electrical stability. The inter-connect, around 500 µm thick, can be integrated into thin electronic packaging. The synthesis process of the composite material, along with its electrical and mechanical and properties are presented in detail. Testing methods and results for mechanical and electrical stability are also illustrated over extensive flexing and stretching cycles. The materials put into test, along with conductive silver (Ag) - polydimethylsiloxane (PDMS) composite in a sandwich structure, are copper foils, copper coated polyimide (PI) and aluminum (Al) coated polyethylene terephthalate (PET).
Date Created
2020
Contributors
- Nandy, Mayukh (Author)
- Yu, Hongbin (Thesis advisor)
- Chan, Candace (Committee member)
- Jiang, Hanqing (Committee member)
- Arizona State University (Publisher)
Topical Subject
Resource Type
Extent
35 pages
Language
eng
Copyright Statement
In Copyright
Primary Member of
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.I.62816
Level of coding
minimal
Note
Masters Thesis Electrical Engineering 2020
System Created
- 2020-12-08 12:05:59
System Modified
- 2021-08-26 09:47:01
- 3 years 2 months ago
Additional Formats