Full metadata
Title
Reverse Fountain Cytoplasmic Streaming in Rhizopus Oryzae
Description
The intracellular motility seen in the cytoplasm of angiosperm plant pollen tubes is known as reverse fountain cytoplasmic streaming (i.e., cyclosis). This effect occurs when organelles move anterograde along the cortex of the cell and retrograde down the center of the cell. The result is a displacement of cytoplasmic volume causing a cyclic motion of organelles and bulk liquid. Visually, the organelles appear to be traveling in a backwards fountain hence the name. The use of light microscopy bioimaging in this study has documented reverse fountain cytoplasmic streaming for the first time in fungal hyphae of Rhizopus oryzae and other members in the order Mucorales (Mucoromycota). This is a unique characteristic of the mucoralean fungi, with other fungal phyla (e.g., Ascomycota, Basidiomycota) exhibiting unidirectional cytoplasmic behavior that lacks rhythmic streaming (i.e., sleeve-like streaming). The mechanism of reverse fountain cytoplasmic streaming in filamentous fungi is currently unknown. However, in angiosperm plant pollen tubes it’s correlated with the arrangement and activity of the actin cytoskeleton. Thus, the current work assumes that filamentous actin and associated proteins are directly involved with the cytoplasmic behavior in Mucorales hyphae. From an evolutionary perspective, fungi in the Mucorales may have developed reverse fountain cytoplasmic streaming as a method to transport various organelles over long and short distances. In addition, the mechanism is likely to facilitate driving of polarized hyphal growth.
Date Created
2020
Contributors
- Shange, Phakade Mdima (Author)
- Roberson, Robert W. (Thesis advisor)
- Gile, Gillian (Committee member)
- Baluch, Debra (Committee member)
- Arizona State University (Publisher)
Topical Subject
Resource Type
Extent
52 pages
Language
eng
Copyright Statement
In Copyright
Primary Member of
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.I.57445
Level of coding
minimal
Note
Masters Thesis Molecular and Cellular Biology 2020
System Created
- 2020-06-01 08:40:44
System Modified
- 2021-08-26 09:47:01
- 3 years 3 months ago
Additional Formats