Full metadata
Title
Nonlinear Reduced Order Modeling of Structures Exhibiting a Strong Nonlinearity
Description
The focus of this dissertation is first on understanding the difficulties involved in constructing reduced order models of structures that exhibit a strong nonlinearity/strongly nonlinear events such as snap-through, buckling (local or global), mode switching, symmetry breaking. Next, based on this understanding, it is desired to modify/extend the current Nonlinear Reduced Order Modeling (NLROM) methodology, basis selection and/or identification methodology, to obtain reliable reduced order models of these structures. Focusing on these goals, the work carried out addressed more specifically the following issues:
i) optimization of the basis to capture at best the response in the smallest number of modes,
ii) improved identification of the reduced order model stiffness coefficients,
iii) detection of strongly nonlinear events using NLROM.
For the first issue, an approach was proposed to rotate a limited number of linear modes to become more dominant in the response of the structure. This step was achieved through a proper orthogonal decomposition of the projection on these linear modes of a series of representative nonlinear displacements. This rotation does not expand the modal space but renders that part of the basis more efficient, the identification of stiffness coefficients more reliable, and the selection of dual modes more compact. In fact, a separate approach was also proposed for an independent optimization of the duals. Regarding the second issue, two tuning approaches of the stiffness coefficients were proposed to improve the identification of a limited set of critical coefficients based on independent response data of the structure. Both approaches led to a significant improvement of the static prediction for the clamped-clamped curved beam model. Extensive validations of the NLROMs based on the above novel approaches was carried out by comparisons with full finite element response data. The third issue, the detection of nonlinear events, was finally addressed by building connections between the eigenvalues of the finite element software (Nastran here) and NLROM tangent stiffness matrices and the occurrence of the ‘events’ which is further extended to the assessment of the accuracy with which the NLROM captures the full finite element behavior after the event has occurred.
i) optimization of the basis to capture at best the response in the smallest number of modes,
ii) improved identification of the reduced order model stiffness coefficients,
iii) detection of strongly nonlinear events using NLROM.
For the first issue, an approach was proposed to rotate a limited number of linear modes to become more dominant in the response of the structure. This step was achieved through a proper orthogonal decomposition of the projection on these linear modes of a series of representative nonlinear displacements. This rotation does not expand the modal space but renders that part of the basis more efficient, the identification of stiffness coefficients more reliable, and the selection of dual modes more compact. In fact, a separate approach was also proposed for an independent optimization of the duals. Regarding the second issue, two tuning approaches of the stiffness coefficients were proposed to improve the identification of a limited set of critical coefficients based on independent response data of the structure. Both approaches led to a significant improvement of the static prediction for the clamped-clamped curved beam model. Extensive validations of the NLROMs based on the above novel approaches was carried out by comparisons with full finite element response data. The third issue, the detection of nonlinear events, was finally addressed by building connections between the eigenvalues of the finite element software (Nastran here) and NLROM tangent stiffness matrices and the occurrence of the ‘events’ which is further extended to the assessment of the accuracy with which the NLROM captures the full finite element behavior after the event has occurred.
Date Created
2020
Contributors
- Lin, Jinshan (Author)
- Mignolet, Marc (Thesis advisor)
- Jiang, Hanqing (Committee member)
- Oswald, Jay (Committee member)
- Spottswood, Stephen (Committee member)
- Rajan, Subramaniam D. (Committee member)
- Arizona State University (Publisher)
Topical Subject
Resource Type
Extent
193 pages
Language
eng
Copyright Statement
In Copyright
Primary Member of
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.I.57255
Level of coding
minimal
Note
Doctoral Dissertation Mechanical Engineering 2020
System Created
- 2020-06-01 08:23:25
System Modified
- 2021-08-26 09:47:01
- 3 years 3 months ago
Additional Formats