Full metadata
Title
Serial Femtosecond Crystallography of Proteins in Proteins and Cancer
Description
This thesis focuses on serial crystallography studies with X-ray free electron lasers
(XFEL) with a special emphasis on data analysis to investigate important processes
in bioenergy conversion and medicinal applications.
First, the work on photosynthesis focuses on time-resolved femtosecond crystallography
studies of Photosystem II (PSII). The structural-dynamic studies of the water
splitting reaction centering on PSII is a current hot topic of interest in the field, the
goal of which is to capture snapshots of the structural changes during the Kok cycle.
This thesis presents results from time-resolved serial femtosecond (fs) crystallography
experiments (TR-SFX) where data sets are collected at room temperature from a
stream of crystals that intersect with the ultrashort femtosecond X-ray pulses at an
XFEL with the goal to obtain structural information from the transient state (S4)
state of the cycle where the O=O bond is formed, and oxygen is released. The most
current techniques available in SFX/TR-SFX to handle hundreds of millions of raw
diffraction patterns are discussed, including selection of the best diffraction patterns,
allowing for their indexing and further data processing. The results include two 4.0 Å
resolution structures of the ground S1 state and triple excited S4 transient state.
Second, this thesis reports on the first international XFEL user experiments in
South Korea at the Pohang Accelerator Laboratory (PAL-XFEL). The usability of this
new XFEL in a proof-of-principle experiment for the study of microcrystals of human
taspase1 (an important cancer target) by SFX has been tested. The descriptions of
experiments and discussions of specific data evaluation challenges of this project in
light of the taspase1 crystals’ high anisotropy, which limited the resolution to 4.5 Å,
are included in this report
In summary, this thesis examines current techniques that are available in the
SFX/TR-SFX domain to study crystal structures from microcrystals damage-free,
with the future potential of making movies of biological processes.
(XFEL) with a special emphasis on data analysis to investigate important processes
in bioenergy conversion and medicinal applications.
First, the work on photosynthesis focuses on time-resolved femtosecond crystallography
studies of Photosystem II (PSII). The structural-dynamic studies of the water
splitting reaction centering on PSII is a current hot topic of interest in the field, the
goal of which is to capture snapshots of the structural changes during the Kok cycle.
This thesis presents results from time-resolved serial femtosecond (fs) crystallography
experiments (TR-SFX) where data sets are collected at room temperature from a
stream of crystals that intersect with the ultrashort femtosecond X-ray pulses at an
XFEL with the goal to obtain structural information from the transient state (S4)
state of the cycle where the O=O bond is formed, and oxygen is released. The most
current techniques available in SFX/TR-SFX to handle hundreds of millions of raw
diffraction patterns are discussed, including selection of the best diffraction patterns,
allowing for their indexing and further data processing. The results include two 4.0 Å
resolution structures of the ground S1 state and triple excited S4 transient state.
Second, this thesis reports on the first international XFEL user experiments in
South Korea at the Pohang Accelerator Laboratory (PAL-XFEL). The usability of this
new XFEL in a proof-of-principle experiment for the study of microcrystals of human
taspase1 (an important cancer target) by SFX has been tested. The descriptions of
experiments and discussions of specific data evaluation challenges of this project in
light of the taspase1 crystals’ high anisotropy, which limited the resolution to 4.5 Å,
are included in this report
In summary, this thesis examines current techniques that are available in the
SFX/TR-SFX domain to study crystal structures from microcrystals damage-free,
with the future potential of making movies of biological processes.
Date Created
2020
Contributors
- Ketawala, Gihan Kaushyal (Author)
- Fromme, Petra (Thesis advisor)
- Liu, Wei (Committee member)
- Kirian, Richard (Committee member)
- Arizona State University (Publisher)
Topical Subject
Resource Type
Extent
135 pages
Language
eng
Copyright Statement
In Copyright
Primary Member of
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.I.57193
Level of coding
minimal
Note
Masters Thesis Chemistry 2020
System Created
- 2020-06-01 08:19:23
System Modified
- 2021-08-26 09:47:01
- 3 years 2 months ago
Additional Formats