Full metadata
Title
Impact Assessments of Extreme Weather Events using Geographical Approaches
Description
Recent extreme weather events such the 2020 Nashville, Tennessee tornado and Hurricane Maria highlight the devastating economic losses and loss of life associated with weather-related disasters. Understanding the impacts of extreme weather events is critical to mitigating disaster losses and increasing societal resilience to future events. Geographical approaches are best suited to examine social and ecological factors in extreme weather event impacts because they systematically examine the spatial interactions (e.g., flows, processes, impacts) of the earth’s system and human-environment relationships. The goal of this research is to demonstrate the utility of geographical approaches in assessing social and ecological factors in extreme weather event impacts. The first two papers analyze the social factors in the impact of Hurricane Sandy through the application of social geographical factors. The first paper examines how knowledge disconnect between experts (climatologists, urban planners, civil engineers) and policy-makers contributed to the damaging impacts of Hurricane Sandy. The second paper examines the role of land use suitability as suggested by Ian McHarg in 1969 and unsustainable planning in the impact of Hurricane Sandy. Overlay analyses of storm surge and damage buildings show damage losses would have been significantly reduced had development followed McHarg’s suggested land use suitability. The last two papers examine the utility of Unpiloted Aerial Systems (UASs) technologies and geospatial methods (ecological geographical approaches) in tornado damage surveys. The third paper discusses the benefits, limitations, and procedures of using UASs technologies in tornado damage surveys. The fourth paper examines topographical influences on tornadoes using UAS technologies and geospatial methods (ecological geographical approach). This paper highlights how topography can play a major role in tornado behavior (damage intensity and path deviation) and demonstrates how UASs technologies can be invaluable tools in damage assessments and improving the understanding of severe storm dynamics (e.g., tornadic wind interactions with topography). Overall, the significance of these four papers demonstrates the potential to improve societal resilience to future extreme weather events and mitigate future losses by better understanding the social and ecological components in extreme weather event impacts through geographical approaches.
Date Created
2020
Contributors
- Wagner, Melissa Anne (Author)
- Cerveny, Randall S. (Thesis advisor)
- Wentz, Elizabeth (Thesis advisor)
- Chhetri, Netra B (Committee member)
- Vivoni, Enrique R (Committee member)
- Arizona State University (Publisher)
Topical Subject
Resource Type
Extent
156 pages
Language
eng
Copyright Statement
In Copyright
Primary Member of
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.I.57152
Level of coding
minimal
Note
Doctoral Dissertation Geography 2020
System Created
- 2020-06-01 08:16:07
System Modified
- 2021-08-26 09:47:01
- 3 years 3 months ago
Additional Formats