Full metadata
Title
Techno-Economic Analysis of Capturing Carbon Dioxide from the Air: Positioning the Technology in the Energy Infrastructure of the Future
Description
As the global community raises concerns regarding the ever-increasing urgency of climate change, efforts to explore innovative strategies in the fight against this anthropogenic threat is growing. Along with other greenhouse gas mitigation technologies, Direct Air Capture (DAC) or the technology of removing carbon dioxide directly from the air has received considerable attention. As an emerging technology, the cost of DAC has been the prime focus not only in scientific society but also between entrepreneurs and policymakers. While skeptics are concerned about the high cost and impact of DAC implementation at scales comparable to the magnitude of climate change, industrial practitioners have demonstrated a pragmatic path to cost reduction. Based on the latest advancements in the field, this dissertation investigates the economic feasibility of DAC and its role in future energy systems. With a focus on the economics of carbon capture, this work compares DAC with other carbon capture technologies from a systemic perspective. Moreover, DAC’s major expenses are investigated to highlight critical improvements necessary for commercialization. In this dissertation, DAC is treated as a backstop mitigation technology that can address carbon dioxide emissions regardless of the source of emission. DAC determines the price of carbon dioxide removal when other mitigation technologies fall short in meeting their goals. The results indicate that DAC, even at its current price, is a reliable backup and is competitive with more mature technologies such as post-combustion capture. To reduce the cost, the most crucial component of a DAC design, i.e., the sorbent material, must be the centerpiece of innovation. In conclusion, DAC demonstrates the potential for not only negative emissions (carbon dioxide removal with the purpose of addressing past emissions), but also for addressing today’s emissions. The results emphasize that by choosing an effective scale-up strategy, DAC can become sufficiently cheap to play a crucial role in decarbonizing the energy system in the near future. Compared to other large-scale decarbonization strategies, DAC can achieve this goal with the least impact on our existing energy infrastructure.
Date Created
2020
Contributors
- Azarabadi, Habib (Author)
- Lackner, Klaus S (Thesis advisor)
- Allenby, Braden R. (Committee member)
- Dirks, Gary W (Committee member)
- Reddy, Agami (Committee member)
- Arizona State University (Publisher)
Topical Subject
Resource Type
Extent
197 pages
Language
eng
Copyright Statement
In Copyright
Primary Member of
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.I.57151
Level of coding
minimal
Note
Doctoral Dissertation Sustainable Engineering 2020
System Created
- 2020-06-01 08:16:05
System Modified
- 2021-08-26 09:47:01
- 3 years 2 months ago
Additional Formats