Full metadata
Title
An Examination of Transmission System Flexibility Metrics
Description
In recent years, with the increasing penetration of solar generation, the uncertainty and variability of the power system generation also have increased. Power systems always require a balance between generation and load. The generation of the conventional generators must be scheduled to meet the total net load of the system with the variability and uncertainty of the solar resources integrated. The ability to match generation to load requires certain flexibility of the conventional generation units as well as a flexible transmission network to deliver the power. In this work, given the generation flexibility primarily reflected in the ramping rates, as well as the minimum and maximum output of the generation units, the transmission network flexibility is assessed using the metric developed in this work.
The main topic of this thesis is the examination of the transmission system flexibility using time series power flows (TSPFs). First, a TSPFs program is developed considering the economic dispatch of all the generating stations, as well as the available ramping rate of each generating unit. The time series power flow spans a period of 24 hours with 5-minute time interval and hence includes 288 power flow snapshots. Every power flow snapshot is created based on the power system topology and the previous system state. These power flow snapshots are referred to as the base case power flow below.
Sensitivity analysis is then conducted by using the TSPFs program as a primary tool, by fixing all but one of the system changes which include: solar penetration, wires to wires interconnection, expected retirements of coal units and expected participation in the energy
imbalance market. The impact of each individual change can be evaluated by the metric developed in the following chapters.
The main topic of this thesis is the examination of the transmission system flexibility using time series power flows (TSPFs). First, a TSPFs program is developed considering the economic dispatch of all the generating stations, as well as the available ramping rate of each generating unit. The time series power flow spans a period of 24 hours with 5-minute time interval and hence includes 288 power flow snapshots. Every power flow snapshot is created based on the power system topology and the previous system state. These power flow snapshots are referred to as the base case power flow below.
Sensitivity analysis is then conducted by using the TSPFs program as a primary tool, by fixing all but one of the system changes which include: solar penetration, wires to wires interconnection, expected retirements of coal units and expected participation in the energy
imbalance market. The impact of each individual change can be evaluated by the metric developed in the following chapters.
Date Created
2019
Contributors
- Chen, Mengxi (Author)
- Vittal, Vijay (Thesis advisor)
- Hedman, Mojdeh Khorsand (Committee member)
- Wu, Meng (Committee member)
- Arizona State University (Publisher)
Topical Subject
Resource Type
Extent
77 pages
Language
eng
Copyright Statement
In Copyright
Primary Member of
Peer-reviewed
No
Open Access
No
Handle
https://hdl.handle.net/2286/R.I.55585
Level of coding
minimal
Note
Masters Thesis Electrical Engineering 2019
System Created
- 2020-01-14 09:16:43
System Modified
- 2021-08-26 09:47:01
- 3 years 2 months ago
Additional Formats